

Pesquisa em Engenharia: Ciência e Aplicação

Rafael Gonçalves Mafra (Organizador)

Pesquisa em Engenharia: Ciência e Aplicação

Rafael Gonçalves Mafra (Organizador)

Editora Chefe Marcia A. A. Marques Coordenadora Editorial Isabela Arantes Ferreira Bibliotecária Maria Alice Ferreira Diagramação Marcos Antonio Ribeiro Pereira Arte da Capa Matheus Lacerra Imagem da Capa Freepik Revisão Os Autores O conteúdo deste livro está licenciado sob uma licença de Atribuição Creative Commons. Atribuição-Não-Comercial Não Derivativos 4.0 Internacional (CC BY-NC-ND 4.0).

2021 by Bookerfield Editora Copyright © Bookerfield Editora Copyright do Texto © 2021 Os autores Copyright da Edição © 2021 Bookerfield Editora Os autores cedem à Bookerfield Editora os direitos para esta edição

Esta obra é de natureza digital (e-book). Versões impressas são permitidas, não tendo a Bookerfield Editora qualquer responsabilidade pela confecção e distribuição de exemplares físicos deste conteúdo.

Todos os manuscritos da obra passaram por rigorosa avaliação cega pelos pares, baseadas em critérios científicos e imparciais, recebendo a aprovação após atender os critérios técnicos estabelecidos pelo Conselho Editorial.

Todo o conteúdo do livro e de artigos individuais é de responsabilidade exclusiva de seus respectivos autores, não sendo a Bookerfield Editora responsável por quaisquer eventuais irregularidades.

Situações como plágio, má conduta ética/científica ou dados e resultados fraudulentos são de responsabilidade do autor, comprometendo-se a Bookerfield Editora em investigá-las rigorosamente e tomar as ações cabíveis.

O download, compartilhamento e referenciação da obra são permitidos mediante atribuição de crédito aos autores e à Editora. A comercialização desta obra é expressamente proibida.

CONSELHO EDITORIAL

Ciências Agrárias

Afrânio Silva Madeiro Alirva Magda Santos do Vale Gomes Ana Luiza Trovo Margues de Souza André Giarola Boscarato Carlos Eugenio Fortes Teixeira Daniela Kunkel Daniele Cristina Ficanha Elson Barbosa da Silva Junior Fabiana Schiochet Fernanda Beatriz Pereira Cavalcanti Fernanda Morcatti Coura Flávio José Rodrigues Cruz Guilherme Donadel Heiriane Martins Sousa Jairton Fraga Araujo João Francisco Severo Santos Joelma Leão Buchir Kleber Fernando Pereira Maria Cristina Bueno Coelho Monyck Jeane dos Santos Lopes Pablo Daniel Freitas Bueno Renato Jaqueto Goes

Ciências Biológicas

Afrânio Silva Madeiro Alirya Magda Santos do Vale Gomes Ana Luiza Trovo Marques de Souza André Giarola Boscarato Carlos Eugenio Fortes Teixeira Daniela Kunkel Daniele Cristina Ficanha Elson Barbosa da Silva Junior Fabiana Schiochet Fernanda Beatriz Pereira Cavalcanti Fernanda Morcatti Coura Flávio José Rodrigues Cruz Guilherme Donadel Heiriane Martins Sousa Jairton Fraga Araujo João Francisco Severo Santos Joelma Leão Buchir Kleber Fernando Pereira Maria Cristina Bueno Coelho Monyck Jeane dos Santos Lopes Pablo Daniel Freitas Bueno Renato Jaqueto Goes

Ciências da Saúde

Alexandre Visconti Brick Aline Correa de Carvalho Ana Luiza Trovo Margues de Souza André de Araújo Pinto Andressa Ribeiro Contreira Bárbara de Lima Lucas Bianca Barros da Costa Carlos Vinícius Pagani Vieira Machado Débora Cristina Damasceno Deborah Margatho Ramos Gonçalves Diogo de Sousa Martins Elisângela Rodrigues Carrijo Emanuel Tenório Paulino Estélio Henrique Martin Dantas **Eveline Fernandes Vale** Fabiana Leticia Sbaraini Fabio José Antonio da Silva Jaqueline Rocha Borges dos Santos João Francisco Severo Santos José Aderval Aradão José Robertto Zaffalon Júnior

Jovino Gentilini Junior Juliane Campos Inácio Líncon Bordignon Somensi Luciane Cristina Arantes Marcela Melo dos santos Marcello Alberton Herdt Marcelo de Oliveira Pinto Marcos Guimarães de Souza Cunha Maria Patricia Costa Villela Nara Michelle Moura Soares Paulo Celso Budri Freire Pedro Paulo Gattai Gomes **Raquel Ayres** Renata Oliveira de Barcelos Renato Carlos Machado Roberson Geovani Casarin Rogério Wagner da Silva Sergio Ibañez Nunes Sheila Moura Amaral Taíza Fernanda Ramalhais Vivian Victoria Vivanco Valenzuela

Ciências Exatas e da Terra

Andrea Sartori Jabur Antônio Carlos Ribeiro Araújo Júnior Cláudia Hitomi Watanabe Rezende Dalvani Fernandes **Evandro Preuss** Gerson Cruz Araujo Gisane Aparecida Michelon Henrique Mariano Costa do Amaral Henrique Pereira Oliveira d'Eça Neves Isidro ihadua João César Abreu de Oliveira Filho Lívia Sancho Manolo Cleiton Costa de Freitas Marcos Vinicius de Oliveira Peres Paulo Celso Budri Freire Sonia Tomie Tanimoto

Tânia do Carmo Vagner Marques de Moura Valdecir Alves dos Santos Júnior

Ciências Humanas

Ana Margarida Theodoro Caminhas Ana Maria Senac Figueroa Anderson Dantas da Silva Brito Breno Henrique Ferreira Cypriano Bruno Cezar Silva Camila Bueno Greio Camila de Vasconcelos Tabares Cássia Maria Bonifácio Dalvani Fernandes Edonilce da Rocha Barros Elisângela Rodrigues Carrijo Eulalia Fabiano João César Abreu de Oliveira Filho João Francisco Severo Santos Josael Jario Santos Lima Luciano Sérgio Ventin Bomfim Marcos Pereira dos Santos Marcos Pereira Magalhães Miguel Rodrigues Netto Rebecca Bianca de Melo Magalhães Roberson Geovani Casarin Taíza Fernanda Ramalhais Tatiane dos Santos Duarte

Ciências Sociais Aplicadas

Ana Margarida Theodoro Caminhas Bruno Cezar Silva Camila Augusta Alves Pereira Camila Nathalia Padula de Godoy Dandara Scarlet Sousa Gomes Bacelar Daniel Nascimento e Silva Darline Maria Santos Bulhões Denise Tanaka dos Santos Elisângela Rodrigues Carrijo Eulalia Fabiano Fabio Adriano Stürmer Kinsel Fabricio Lemos de Sigueira Mendes Gelson Mario Filho Hector Rodrigo Ribeiro Paes Ferraz Helga Midori Iwamoto Horácio Monteschio João Francisco Severo Santos Josael Jario Santos Lima Leandro Nunes Soares da Silva Lucas Rosas de Freitas Sá Barreto Miguel Rodrigues Netto Nagib Abrahão Duailibe Neto Nelson Calsavara Garcia Junior Patrícia Loureiro Abreu Alves Barbosa Renato Obikawa Kyosen Sandy Rodrigues Faidherb Silvia Helena Ribeiro Cruz Solange Kileber Stella Villela Florêncio Thiago Nery Pandolfo Veyzon Campos Muniz Ygor de Siqueira Mendes Mendonça

Engenharias

Alejandro Victor Hidalgo Valdivia Alex Milton Albergaria Campos Ana Carla Fernandes Gasques Andrea Sartori Jabur Arlete Barbosa dos Reis Cristhiane Michiko Passos Okawa Daniele Cristina Ficanha Diego Matheus Sanches Elaine Patricia Arantes Fernando Oliveira de Andrade Henrique Mariano Costa do Amaral Jefferson Sousa Farias Laís Roberta Galdino de Oliveira Leila Cristina Nunes Ribeiro Letícia Reis Batista Rosas Marcelo Henrique da Silva Marcelo Marques Marcos Guimarães de Souza Cunha Mileni Cristina da Silva Renata Jardim Martini Thiago Averaldo Bimestre Tiago Brandão Costa Valdecir Alves dos Santos Júnior

Linguística, Letras e Artes

Adriana dos Reis Silva Anderson Dantas da Silva Brito Danuzia Marjorye Santos de Araújo Jane Catia Pereira Melo Luceni Lazara da Costa Ribeiro Márcia Donizete Leite-Oliveira Maria Christina da Silva Firmino Cervera Simone Oliveira Vieira Peres Thiago Blanch Pires Vera Regiane Brescovici Nunes

Multidisciplinar

Alejandro Victor Hidalgo Valdivia Ana Carla Fernandes Gasques Ana Margarida Theodoro Caminhas Andrea Sartori Jabur Arlete Barbosa dos Reis Cláudia Hitomi Watanabe Rezende Cristhiane Michiko Passos Okawa Érika Alves Tavares Marques Fabricio Lemos de Siqueira Mendes Fernando Oliveira de Andrade Isidro ihadua José Amorim Marcelo Marques

Pesquisa em Engenharia: Ciência e Aplicação

Editora Chefe	Marcia A. A. Marques	
Coordenadora Editorial	Isabela Arantes Ferreira	
Bibliotecária	Maria Alice Ferreira	
Diagramação	Marcos Antonio Ribeiro Pereira	
Revisão	Os Autores	

Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil)

Pesquisa em engenharia : ciência e aplicação [livro eletrônico] / organizador Rafael Gonçalves Mafra. -- São Paulo : Bookerfield, 2022. PDF Vários autores. Bibliografia ISBN 978-65-89929-49-9 1. Engenharia 2. Engenharia - Metodologia 3. Inovações tecnológicas 4. Pesquisa I. Mafra, Rafael Gonçalves.

22-107643

CDD-620.0042

Índices para catálogo sistemático:

1. Engenharia : Pesquisa : Tecnologia 620.0042

Maria Alice Ferreira - Bibliotecária - CRB-8/7964

DOI 10.53268/BKF22040200

Bookerfield Editora

São Paulo – Brasil Telefone: +55 (11) 98441-4444 www.bookerfield.com contato@bookerfield.com

DECLARAÇÃO DOS AUTORES

Os autores declaram não haver qualquer interesse comercial ou irregularidade que comprometa a integridade desta obra; declaram que participaram da elaboração e revisão da obra, atestando a confiabilidade dos dados e resultados; declaram que a obra está livre de plágio acadêmico; declaram que a publicação desta obra não fere qualquer outro contrato por eles firmados; declaram ter atendido eventuais exigências de outras partes, como instituições financiadoras, para a publicação desta obra.

APRESENTAÇÃO

Neste livro são apresentados resultados de trabalhos científicos aplicados à grande área de Engenharia. De abordagem objetiva, a obra se mostra de grande relevância para graduandos, alunos de pós-graduação, docentes e profissionais. Os capítulos estão agrupados em duas seções: i) materiais; ii) águas continentais e oceânicas.

Pelo capítulo um é apresentado o desenvolvimento de uma metodologia para obter-se reprodutibilidade da área superficial de um eletrodo de estanho durante o estudo do crescimento de óxidos de estanho. A reprodutibilidade da área superficial pode ser comprovada pela reprodutibilidade das densidades de carga anódicas dos voltamogramas anódicos a 50 mVs⁻¹ posteriores a cada tratamento.

Por meio do capítulo dois é analisada a substituição de parte do carvão mineral, utilizado em siderúrgicas, por biomassa. Entre os grandes desafios do setor estão a produção de aço a preços competitivos e a substituição de parte do carvão mineral utilizado por biomassa. A biomassa é considera neutra em emissões de CO2, devido a captura do mesmo durante o processo de fotossíntese, o que a torna atraente para seu uso nos processos siderúrgicos. Além disso, o seu uso pode gerar redução de custos, principalmente se for considerado os rejeitos do agronegócio que não possuem um alto valor agregado. Neste contexto, por este capítulo serão mostradas algumas possíveis utilizações de biomassa nos processos siderúrgicos através de estudos que vem sendo realizado no tema e aplicações na indústria. Será possível notar que o uso de biomassa é uma alternativa viável a curto prazo para atender as crescentes restrições ambientais atuais.

Através do capítulo três é analisado o crescimento voltamétrico de óxido de estanho em solução tampão fosfato, pH 8,7. Medidas elipsométricas ex-situ foram realizadas para determinar a espessura dos óxidos crescidos. A partir desses resultados, o volume do filme por unidade de carga, Vf, foi calculado para diferentes densidades de carga. As medidas elipsométricas mostram que filmes de óxido de estanho crescidos a 2 mVs-1 são menos densos para valores de espessura 3,37 nm, tendo Vf próximo a 1,70 x 10-4 cm3C-1. Para valores mais altos de espessura (11,0 – 12,4 nm) os filmes se tornam mais densos tendo Vf próximo a 0,5 x 10-4 cm3C-1. No caso de 100 mVs-1 os filmes apresentam o mesmo comportamento, tendo Vf próximo de 3,74 x 10-4 cm3.C-1 para espessura de 4,56 nm e Vf próximo de 1,32 x 10-4 cm3.C-1 para espessura de 7,42 nm. Imagens de Microscopia de Força Atômica mostraram que a morfologia muda e a rugosidade dos filmes aumenta com o aumento da espessura e do potencial final da voltametria.

O capítulo quatro trata do Nitreto cúbico de boro (cBN), material imprescindível para usinagem com alta precisão e alta velocidade de

materiais ferrosos como aço. O cBN é recomendado para trabalhos sob condições severas, tais como corte intermitente, em que dureza deve estar associada com tenacidade para evitar a quebra. Na síntese do cBN, são aplicados, basicamente, dois tipos de catalisadores: nitreto de magnésio e magnésio. Cada qual oferece diferentes possibilidades, tais como maiores valores de profundidade de corte ou menor nível de rugosidade superficial. Este capítulo contribui para uma melhor compreensão da manipulação dos parâmetros aplicados no regime de síntese deste elemento e, favorecendo o desenvolvimento da tecnologia de sua produção.

Por meio do capítulo cinco é avaliada a aplicação de separação magnética de alta intensidade no beneficiamento de itabiritos pobres. Na rota de processo avaliada (separação magnética + flotação), a etapa de separação magnética executa a função de pré-concentração e deslamagem. O teor de SiO2 no concentrado foi de 1,46% (menor que o teor objetivo de 2,00%). As recuperações mássica e metalúrgica obtidas com a rota separação magnética + flotação foram maiores em termos absolutos 3,3% e 4,4%, respectivamente.

Através do capítulo seis é realizada a otimização de injeção de poliamida PA66 com 50% GF usando o método Taguchi. O estudo se justifica pela necessidade crescente de materiais mais leves e de maior produtividade em substituição às ligas metálicas, o que demanda o constante desenvolvimento de compósitos poliméricos e eficazes processos de fabricação. Como resposta do estudo, mediu-se a resistência máxima de tração (RTmáx), numa poliamida 66 com carga de 50% de fibra de vidro, Grivory GV-5H®. Fez-se uso da metodologia ANOVA para indentificar-se os fatores de maior significância para o processo. A melhor resistência máxima de tração obtida de 242,6 N/m2, mostrou-se como uma opção na substituição à aplicações de ligas metálicas de alumínio. A melhor resultado se obteve com a temperatura de processamento em 270°C, o fluxo volumétrico de 83 cm³/s, a pressão de recalque de 300 bar, a contrapressão de 10 bar, velocidade da rosca de 50 min-1 e o tempo de recalque com valor de 5 s. As porcentagens de contribuição encontradas foram pressão de recalque com contribuição de 61%, seguido da temperatura de processamento, com contribuição de 17% e em terceiro, o fluxo volumétrico com contribuição de 12%.

A instalação de grandes equipamentos submarinos em águas profundas apresenta uma série de desafios. O capítulo sete trata da análise de estabilidade hidrodinâmica de *Manifolds* submarinos durante a instalação pelo método pendular. O presente capítulo racionaliza tal método e, além disso, considera sistemas para evitar o capotamento, durante um momento crítico do método que é o início da descida, apresentando uma modelagem matemática fenomenológica a partir de casos similares. A etapa de validação foi realizada pela análise comparativa entre a modelagem proposta e resultados de testes experimentais realizados com modelos físicos. Com a confirmação da aderência dos resultados numéricos com os experimentos, esta abordagem se confirma como uma ferramenta de engenharia para

dimensionamento dos equipamentos submarinos instalados pelo Método Pendular para que sejam direcionalmente estáveis.

Por meio do capítulo oito são apresentados os resultados da simulação da distribuição espacial das ondas geradas pela ação de ventos severos sobre o reservatório da barragem de Salto Caxias, no rio Iguaçu, estado do Paraná. Os ventos severos foram estimados através da análise de frequência regional para várias estações anemométricas do Instituto Meteorológico do Paraná (SIMEPAR) para o período de 1998 a 2005. As alturas de ondas foram estimadas pelo método paramétrico SMB, que usa como dados de entrada o fetch e a velocidade do vento. O método SMB foi aplicado pelo modelo computacional ONDACAD. Os testes estatísticos indicaram que a distribuição de *Wakeby* foi a mais robusta para as séries curtas de ventos horários máximos anuais, produzindo estimativas de ventos severos que variaram entre 25,7 ms-1 (tempo de retorno de T_r=10 anos) a 50,9 ms-1 (T_r=100 anos). O estudo presta grande contribuição à compreensão da quantificação das alturas de ondas geradas por ventos severos neste importante reservatório do estado do Paraná.

Pelo capítulo nove é apresentada uma análise comparativa bidimensional entre alturas de ondas resultantes da aplicação dos modelos paramétricos MARQUES e JONSWAP ao reservatório da Úsina Hidrelétrica de Itaipu Binacional, localizado no Rio Paraná entre o Brasil e o Paraguai. Os campos de vento uniforme relacionados a períodos de recorrência de 10, 20, 50 e 100 anos foram obtidos pelos registros realizados pelo Sistema Meteorológico do Paraná (SIMEPAR). Através da utilização do modelo ONDACAD foram determinados os campos de fetch e a transformação em campos de ondas pela utilização dos modelos paramétricos MARQUES e JONSWAP. Ao proceder a análise constatou-se que, ao majorar os resultados do modelo JONSWAP em 78% chega-se aos resultados bidimensionais gerados pelo modelo Marques. Esta condição foi verificada para situações de ventos extremos, ou seja, superiores a 20ms-1 e corpos hídricos que possuem fetch máximo da ordem de 10 guilômetros. O estudo contribui para a compreensão da distribuição das magnitudes das alturas de ondas neste reservatório de grande importância no âmbito da América do Sul, de grande utilidade para estudos relacionados, por exemplo, a erosões marginais, ecossistemas aquáticos continentais, psicultura por tangues-rede, guantificação de gases de efeito estufa devido à ressuspensão de sedimentos devido a propagação de ondas.

Boa leitura!

SUMÁRIO

CAPÍTULO 1

METODOLOGIA PARA A REPRODUTIBILIDADE DA ÁREA SUPERFICIAL DE UM ELETRODO DE ESTANHO DURANTE UM ESTUDO DE CRESCIMENTO DE ÓXIDOS......14

Tiago Brandão Costa Tania Maria Cavalcanti Nogueira DOI: 10.53268/BKF22040201

CAPÍTULO 2

USO DE BIOMASSA NA PRODUÇÃO DE FERRO E AÇO27 Alex Milton Albergaria Campos Paulo Santos Assis DOI: 10.53268/BKF22040202

CAPÍTULO 3

ESPESSURA E MORFOLOGIA DOS ÓXIDOS DE ESTANHO CRESCIDOS POR VOLTAMETRIA EM SOLUÇÃO FOSFATO

Tiago Brandão Costa Tania Maria Cavalcanti Nogueira DOI: 10.53268/BKF22040203

CAPÍTULO 4

Luã Monteiro Guimarães Nunes DOI: 10.53268/BKF22040204

CAPÍTULO 5

APLICAÇÃO DE SEPARAÇÃO MAGNÉTICA DE ALTA INTENSIDADE (WHIMS) NO BENEFICIAMENTO DE ITABIRITOS POBRES......72

João Paulo Melo Silva Antônio Eduardo Clark Peres DOI: 10.53268/BKF22040205

CAPÍTULO 6

DOI: 10.53268/BKF22040206

CAPÍTULO 7

ESTABILIDADE HIDRODINÂMICA DIRECIONAL DE MANIFOLDS			
SUBMARINOS DURANTE SUA INSTALAÇÃO PELO MÉTODO			
PENDULAR	106		
Gustavo Calazans de Cerqueira			
Antonio Carlos Fernandes			
DOI: 10.53268/BKF22040207			

CAPÍTULO 8

MAPEAMENTO DA PROFUNDIDADE DE MISTURA PROVOCADA POR VENTOS SEVEROS EM RESERVATÓRIO SINUOSO123

Marcelo Marques Alejandro Victor Hidalgo Valdivia Fernando Oliveira de Andrade Elaine Patricia Arantes Isabela Arantes Ferreira DOI: 10.53268/BKF22040208

CAPÍTULO 9

ANÁLISE COMPARATIVA DE MODELOS PARAMÉTRICOS NA SIMULAÇÃO DE ALTURA DE ONDAS NO RESERVATÓRIO DE	
ITAIPU 1	31
Marcelo Marques	
Fernando O. de Andrade	
Elaine P. Arantes	
Cristhiane M. P. Okawa	
Isabela A. Ferreira	
DOI: 10.53268/BKF22040209	
ÍNDICE REMISSIVO	41

SOBRE O	ORGANIZADOR	144

CAPÍTULO 1

METODOLOGIA PARA A REPRODUTIBILIDADE DA ÁREA SUPERFICIAL DE UM ELETRODO DE ESTANHO DURANTE UM ESTUDO DE CRESCIMENTO DE ÓXIDOS

Tiago Brandão Costa lattes.cnpq.br/3243521723505701

Escola de Engenharia Industrial Metalúrgica de Volta Redonda Departamento de Engenharia Metalúrgica e Materiais Universidade Federal Fluminense, Volta Redonda, Rio de Janeiro

Tania Maria Cavalcanti Nogueira lattes.cnpg.br/1309300835320812

Escola de Engenharia Industrial Metalúrgica de Volta Redonda Departamento de Engenharia Metalúrgica e Materiais Universidade Federal Fluminense,

Volta Redonda. Rio de Janeiro

RESUMO – No presente trabalho foi desenvolvida uma metodologia para obter-se reprodutibilidade da área superficial de um eletrodo de estanho durante o estudo do crescimento de óxidos de estanho em soluções tampão borato e fosfato, pH 8,7. Para isto, o tratamento superficial anterior a cada crescimento voltamétrico anódico do óxido de estanho foi realizado a potencial catódico na mesma solução a – 1,2 V durante 10 minutos. A reprodutibilidade da área superficial pode ser comprovada pela reprodutibilidade das densidades de carga anódicas dos voltamogramas anódicos a 50 mVs⁻¹ posteriores a cada tratamento.

PALAVRAS-CHAVE: Óxido de estanho; Voltametria; Área superficial.

1. INTRODUÇÃO

Para estudo do 0 de óxidos crescimento sobre metais faz-se necessário conhecer 0 comportamento eletroquímico do metal no meio em questão. As densidades de carda que são usualmente calculadas em termos de carga total dividida pela área geométrica do eletrodo podem sofrer irreprodutibilidade no caso de óxidos se a rugosidade da superfície for alterada de ensaio para ensaio. Isto porque óxidos recobrem a superfície na faixa de espessuras de nanômetros acompanhando a topografia da superfície. Deste modo é de extrema importância que a área superficial não varie de ensaio para ensaio. O obietivo do presente trabalho é apresentar uma metodologia para verificar a reprodutibilidade da área superficial no estudo do crescimento de óxidos de estanho sobre estanho em soluções borato e fosfato.

2. MATERIAIS

Para execução dos ensaios eletroquímicos foi utilizado uma célula eletroquímica a três eletrodos. Como eletrodo de trabalho, utilizou-se uma barra de Sn com pureza de 99,99%, montada em um suporte de Teflon, que expõe uma área circular de 0,50 cm². Como eletrodo de referência utilizou-se o eletrodo de Hg/HgCl₂/ KCl 1,0M. O contra eletrodo utilizado nos ensaios foi um fio de platina embutido em vidro de chumbo.

Os ensaios eletroquímicos foram realizados utilizando-se um potenciostato PAR modelo 273 – A. Para soluções reagentes PA e água purificada (Milipore Q System) foram usadas. As soluções de trabalho usadas foram: solução tampão fosfato $Na_2H_2PO_4$ 0,18M + KH_2PO_4 0,18M e solução tampão bórico/borato H_3BO_3 0,3M + $Na_2B_4O_7$ 0,15M, ambas com pH = 8,7.

3. RESULTADOS E DISCUSSÃO

O comportamento eletroquímico dos metais é de extrema importância para os estudos de filmes de passivação. Uma das ferramentas para se conhecer o comportamento eletroquímico dos metais são os diagramas de Pourbaix. Estes apresentam as faixas de E *versus* pH nas quais os metais se encontram passivados, porém não informam sobre a influência de diferentes ânions em solução (POURBAIX 1966). A Figura 1 apresenta o diagrama de Pourbaix do sistema Sn / H₂O. Neste diagrama pode ser constatada a ampla faixa de pH onde o metal encontra-se passivado.

Fonte: Atlas de Pourbaix (1974)

A seguir são abordados o comportamento eletroquímico do estanho em soluções de borato e fosfato.

3.1. Comportamento eletroquímico do estanho em solução borato

Na Figura 2 é mostrado um voltamograma do estanho em solução tampão borato, pH 8,7. Pode ser observado um pico catódico (c_1), entre os potenciais -0,8 V e -1,20 V, relativo à redução do óxido crescido ao ar. Entre os potenciais -0,8 V e - 0,6 V, podem ser vistos dois picos anódicos (a_1 e a_2), relativos ao crescimento dos óxidos de estanho na solução borato. Em potenciais mais positivos, acima de - 0,5 V verifica-se a densidade de corrente de passivação do estanho e em torno de 1,5 V a densidade de corrente volta a aumentar devido ao desprendimento de oxigênio, ver Figura 3. Esses resultados estão de acordo com os apresentados na literatura, para o comportamento eletroquímico do estanho em solução borato em uma faixa de pH em torno de 8,2 a 8,9 (KAPUSTA e HACKERMAN 1980), (METIKOS-HUKOVIC e OMANOVIC 1994), (BRUNETTI e TEIJELO 2008).

Figura 2: Voltamograma típico do estanho a 100 mVs⁻¹. Representação dos picos anódicos ($a_1 e a_2$) e catódico (c_1). Solução eletrolítica $H_3BO_3 0,3 M + Na_2B_4O_7$.10 $H_2O 0,15 M$, pH 8,7, eletrodo de referência Hg/Hg₂Cl₂/KCl 1,0 M. Ei = - 0,8 V

Figura 3: Voltamogramas, catódico e anódico para o estanho, a 100 mVs⁻¹. Solução eletrolítica H₃BO₃0,3 M + Na₂B₄O₇.10 H₂O 0,15 M, pH 8,7, eletrodo de referência Hg/Hg₂Cl₂/KCl 1,0 M. E_i = - 0,8 V

O comportamento do Sn em solução tampão fosfato no pH 8,7 também foi verificado e é mostrado na seção a seguir.

3.2. Comportamento eletroquímico do estanho em solução fosfato

A Figura 4 mostra o voltamograma de redução e oxidação do estanho em solução tampão fosfato, pH 8,7. Neste voltamograma são vistos um pico catódico (c_1) e um pico anódico (a_1). O pico c_1 é visto em potenciais entre – 0,8 V e – 1,2 V e se refere à redução do óxido crescido na atmosfera. O pico a_1 , entre potenciais – 0,8 V e – 0,6 V, se refere ao processo de crescimento dos óxidos de estanho na solução fosfato. Em potenciais mais positivos, acima de 0,0 V verifica-se um patamar de densidade de corrente, referente a passivação do metal. Por fim, em torno de 2,0 V a densidade de corrente volta a aumentar devido à reação paralela de desprendimento de oxigênio, conforme Figura 5. Esses resultados estão de acordo com os elucidados na literatura para o crescimento anódico dos óxidos de estanho em solução tampão fosfato (DUC e TISSOT 1979). **Figura 4:** Voltamograma típico do estanho a 100 mVs⁻¹. Representação dos picos anódico (a₁) e catódico (c₁). Solução eletrolítica Na₂H₂PO₄ 0,18 M + KH₂PO₄ 0,18 M, eletrodo de referência Hg/Hg₂Cl₂/KCl 1,0 M. Ei = - 0,8 V

Figura 5: Voltamogramas catódico e anódico do estanho a 100 mVs⁻ ¹. Solução eletrolítica Na₂H₂PO₄ 0,18 M + KH₂PO₄ 0,18 M, eletrodo de referência Hg/Hg₂Cl₂/KCl 1,0 M. E_i = - 0,8 V

3.3. Pré-tratamento de superfície solução borato

Os ensaios voltamétricos foram realizados sempre na mesma área da amostra com o objetivo de minimizar a irreprodutibilidade decorrente da variação da área superficial. Diante disso, procurou-se recuperar a superfície anteriormente a cada voltametria fazendo-se a redução a potencial constante do óxido crescido na voltametria anterior ou simplesmente o óxido crescido na atmosfera.

A fim de se determinar o potencial e o tempo de redução, a amostra foi inicialmente lixada com papel abrasivo 600 em seguida introduzida na célula eletroquímica contendo a solução tampão borato, pH 8,7. Uma varredura catódica a velocidade de 100 mVs⁻¹, conforme Figura 6, foi efetuada para um melhor conhecimento do processo de redução do óxido de estanho sobre o estanho com pureza 99,999%.

Figura 6: Voltametria de redução do óxido de estanho a 100 mVs⁻¹. Solução eletrolítica H₃BO₃ 0,3M + Na₂B₄O₇ 0,15M, pH 8,7, eletrodo de referência Hg/ Hg₂Cl₂/KCl 1,0 M

A curva apresenta um pico de corrente catódica entre -0,8 V e -1,4 V mostrando que nesse intervalo de potencial ocorre a redução do óxido de estanho. Para potenciais mais catódicos aparece a corrente de desprendimento H_2 . Nessas condições a superfície ficava recoberta de bolhas de H_2 ocasionando uma diminuição da área da amostra em contato com o eletrodo. Portanto para a redução potenciostática do óxido de estanho foi escolhido um potencial de -1,2 V. A Figura 7 apresenta os voltamogramas

anódicos a 50 mV.s⁻¹ de uma mesma área do eletrodo de trabalho para os quais o óxido de estanho sempre foi reduzido anteriormente a cada ensaio durante 8 min.

Figura 7: Voltamograma anódico do óxido de estanho a 50 mVs⁻¹, após

A varredura foi realizada entre os potenciais de -1,2 V até 0 V. Na Tabela 1 são mostrados os valores das densidades de carga anódicas de pico, q_p , para cada ensaio. As densidades de carga dos filmes de óxido de Sn foram calculadas de acordo com a Equação 1.

$$q_f = \frac{1}{v} \int_{E_i}^{E_f} i \cdot dE \tag{1}$$

onde q_f é a densidade de carga do filme, v é a velocidade de varredura, E_i é o potencial inicial, E_f é o potencial final, i a densidade de corrente e a integral $\int_{E_i}^{E_f} i \cdot dE$ é a área sob a curva (BARD e FAULKNER 2011).

Ensaios	q _₀ / mCcm⁻²
1	0,73
2	0,88
3	0,87
4	0,91

Tabela 1: Valores de cargas anódicas para o crescimento voltamétrico do óxido de estanho, após redução catódica durante 8 min

A Tabela 1 mostra que os valores de densidade de carga anódica de pico apresentaram um aumento significativo do primeiro para o segundo ensaio. Esses resultados mostram que nem todo o óxido de estanho foi reduzido no primeiro ensaio de redução potenciostática a -1,2 V e no tempo de redução pré-estabelecido. Diante disse, optou-se por aumentar o tempo de redução potenciostática a fim de melhorar a reprodutibilidade.

Na Figura 8 são mostrados os voltamogramas anódicos para o crescimento do óxido de estanho, reduzido anteriormente a cada voltametria durante um período de 10 min. E na Tabela 2 são apresentados os valores de densidades de cargas, q_n, obtidas para essa nova situação.

Figura 8: Voltamograma anódica do estanho a 50 mVs⁻¹. Solução eletrolítica H₃BO₃ 0,3 M + Na₂B₄O₇ 0,15 M, pH 8,7, eletrodo de referência Hg/Hg₂Cl₂/KCl 1,0 M. Potencial final aplicado 0,0 V. Tempo de redução do óxido de estanho igual a 10 min

Ensaios	q _p / mCcm ⁻²
1	0,68
2	0,76
3	0,78
4	0,72

Tabela 2: Valores de cargas anódicas para o crescimento voltamétrico do
óxido de estanho, após redução catódica durante 10 min

De acordo com os resultados da Tabela 2 verifica-se que ocorre uma variação nos valores de densidade de carga de pico. Logo, conclui-se que o tempo de redução não está sendo suficiente paras densidades de carga de pico crescidas na varredura anódica. Isso mostra que nestas condições préestabelecidas o filme de óxido não estava sendo totalmente reduzido a cada voltametria, ocasionando uma irreprodutibilidade.

A fim de reduzir os óxidos de estanho por completo, resolveu-se diminuir o potencial final da voltametria anódica para crescer uma quantidade de óxido de estanho menor. Portanto o potencial final de varredura foi diminuído para – 0,3 V e consideraram-se as mesmas condições dos ensaios anteriores, potencial de redução igual a - 1,2 V e tempo de redução igual a 10 min. Os resultados são mostrados na Figura 9.

Analisando os voltamogramas, da Figura 9, verifica-se que as curvas estão praticamente sobrepostas e os valores de densidade de carga de pico podem ser vistos na Tabela 3. Esses valores indicaram que a redução potenciostática – 1.2 V durante 10 minutos do óxido crescido por voltametria anódica com potencial final igual a - 0,3 V estava recuperando a superfície a cada ensaio. Cabe ressaltar que durante a redução do óxido a densidade de corrente catódica se estabilizou em - 0,016 mAcm⁻². Vale a pena observar que os valores das densidades de carga total, q, estão bem próximos e os valores das densidades de carga de pico, q,, foram inferiores as obtidas nas Tabelas 1 e 2, mostrando que foi crescido na voltametria anódica até - 0,3 V uma quantidade inferior de óxido de estanho.

e potencial final aplicado igual a - 0,3 V **Ensaios** g_ /mCcm⁻² g, / mCcm⁻² 1 0.57 3.52 2 0.62 3,52

0.60

0.57

3.53

3,50

óxido de estanho em solução borato, após redução catódica durante 10 min

Tabela 3: Valores de cargas anódicas para o crescimento voltamétrico do

Conclui-se que para óxidos de estanhos crescidos voltametricamente até potenciais maiores que - 0,3 V não se consegue fazer a redução completa do filme.

3.4. Pré-tratamento de superfície solução fosfato

3

4

O mesmo pré-tratamento foi realizado para os óxidos de estanho crescidos sobre estanho puro em solução fosfato. Inicialmente foi realizada uma voltametria catódica a fim de se verificar o comportamento de redução do óxido, a uma velocidade de 100 mVs-1, conforme Figura 10.

Observa-se de acordo com a Figura 10 que o pico catódico de redução do óxido de estanho em solução tampão fosfato está entre um intervalo de – 0,8 V a – 1,3 V. Esse valor é semelhante ao do crescimento do filme de óxido de estanho em solução tampão borato. Diante disso, optouse por realizar a redução potenciostática do óxido de estanho nas mesmas condições anteriores, potencial de redução constante igual – 1,2 V durante 10 minutos. A Figura 11 mostra os voltamogramas anódicos para o crescimento de óxido de estanho sobre estanho puro em solução tampão fosfato pH 8,7, velocidade de varredura 50 mV.s⁻¹.

Figura 11: Voltamograma anódico do estanho a 50 mVs⁻¹. Solução eletrolítica Na₂H₂PO₄ 0,18 M + KH₂PO₄ 0,18 M, pH 8,7, eletrodo de referência Hg/Hg₂Cl₂/KCl 1,0 M. Potencial aplicado – 0,3V. Tempo de redução do óxido de estanho igual a 10 min

Analisando as voltametrias obtidas na Figura 11 observa-se que as curvas estão praticamente sobrepostas, assim como no resultado obtido na Figura 9. Isso indica que a redução potenciostática a - 1,2 V a 10 min do óxido crescido por voltametria anódica com potencial final igual a - 0,3 V estava recuperando a superfície a cada ensaio. Os valores de densidade carga total de óxido e densidade de carga de pico não apresentaram grandes variação entre os ensaios, e são mostrados na Tabela 4.

Tabela 4: Valores de cargas anódicas para o crescimento voltamétrico do óxido de estanho em solução fosfato, após redução catódica durante 10 min e potencial final aplicado igual a – 0,3 V

Ensaios	q _p / mCcm⁻²	q _f / mCcm ⁻²	
1	3,60	8,74	
2	3,76	8,80	
3	3,60	8,70	
4	3,54	8,67	

4. CONCLUSÕES

Conclui-se que em ambos os casos nas soluções de borato e fosfato o pré-tratamento da superfície aplicando-se um potencial catódico constante de – 1,2 V durante 10 minutos apresentou reprodutibilidade nas varreduras anódicas seguintes. Isso indica que a mesma superfície em termos de área superficial estava sendo reproduzido.

Vale ressaltar que para óxidos crescidos na voltametria anódica com potenciais finais maiores que -0.3 V não se consegue fazer a redução completa do filme.

REFERÊNCIAS

BARD, A. J; FAULKNER, L. R. (2011) **Electrochemical methods Fundamentals and applications.** New York: John Wiley & Songs, 2011. 833p.

BRUNETTI, V; TEIJELO, M. L. (2008) **Oxide/hydroxide films on tin: Part I: Kinetic aspects of the electroformation and electroreduction of the films.** Journal of Electroanalytical Chemistry, v.613, p. 9 -15, out. 2007.

DUC, H; TISSOT, P. (1979) **Anodic behaviour of tin in neutral phosphate solution.** Corrosion Science, v. 19, p. 179 – 190, abr.1979.

KAPUSTA, S. D; HACKERMAN, N. (1980) Anodic passivation of tin in slightly alcaline solution. Electrochimica Acta, v. 25, p. 1625 – 1639, ago. 1979.

METIKOS-HUKOVIC, M.; OMANOVIC, S. (1994) Kinetics anodic oxide-film growth on tin: ionic transport across a barrier in the high-field limit. Materials Chemistry and Physics, v. 38, p. 55 – 62, jan. 1994.

POURBAIX, M. (1974) Atlas of electrochemical equilibria in aqueous solutions, Michigan: National Association of Corrosion Engineers, 1974. 644p.

STIRRUP, B. N; HAMPSON, N. A. (1976) **Anodic passivation of tin in buffered phosphate electrolyte**. Journal of Electroanalytical Chemistry, v.73, p. 198 – 206, out. 1976.

METHODOLOGY FOR THE REPROCIBILITY OF SURFACE AREA OF A TIN ELECTRODE DURING NA OXIDE GROWTH STUDY

ABSTRACT – In the presente work a methodology was developed to obtain the reproducibility of the surface area of a tin electrode during the study of the growth of tin oxide in borate and phosphate buffer solution, pH 8.7. The surface treatment prior to each anodic tin oxide voltammetric growth was carried out at cathodic potential in the same solution at -1.2 V for 10 minutes. The reproducibility of the surface area was verified by the reproducibility of the anodic charge densities of the anodic voltammograms at 50 mVs⁻¹ after each treatment.

KEYWORDS: Tin oxides; Voltammetry; Surface area.

CAPÍTULO 2

USO DE BIOMASSA NA PRODUÇÃO DE FERRO E AÇO

Alex Milton Albergaria Campos lattes.cnpq.br/0483146736276629 REDEMAT-Universidade Federal de Ouro Preto, Ouro Preto –MG

Paulo Santos Assis lattes.cnpg.br/7360474381329605

DEMET-Universidade Federal de Ouro Preto, Ouro Preto –MG

RESUMO – Em usinas siderúrgicas integradas coque 0 carvão а mineral tem papel fundamental, principalmente na produção de coque metalúrgico que será utilizado nos altos-fornos, para produção do ferro gusa. Além disso, o carvão mineral é utilizado na injeção de combustíveis pulverizados, e em alguns casos na sinterização. O grande desafio do setor é produzir aço a preços competitivos, buscando por matérias-primas com menor custo e otimizar seus processos. Outro desafio é relacionado às emissões de CO₂. A siderurgia é responsável por cerca de 10% das emissões de CO₂ no mundo e precisa rever seus processos e matérias-primas para se adequar à nova ordem ambiental do mundo. Uma das estratégias a curto para a siderurgia, principalmente em países como Brasil, é a substituição de parte do carvão mineral utilizado biomassa. А biomassa por é considera neutra em emissões de CO₂, devido a captura do mesmo durante o processo de fotossíntese, o que a torna atraente para seu uso nos processos siderúrgicos. Além disso, o seu uso pode gerar redução de custos, principalmente se for considerado os reieitos do agronegócio que não possuem um alto valor agregado. Neste contexto. por este capítulo serão mostradas algumas possíveis utilizações de biomassa nos processos siderúrgicos através de estudos que vem sendo realizado no tema e aplicações na indústria. Será possível notar que o uso de biomassa é uma alternativa viável a curto prazo para atender as crescentes restrições ambientais atuais.

PALAVRAS-CHAVE: Biomassa; Biocombustíveis; Siderurgia; Carvão mineral; Gases do efeito estufa.

1. INTRODUÇÃO

A indústria siderúrgica é um dos pilares da economia de uma nação, sua produção está diretamente ligada com o desenvolvimento econômico e social de um país. Em contrapartida, a indústria do aço é responsável por cerca de 10% da emissão global de CO₂ total no mundo, como pode ser visto na figura 1 (IRENA, 2020). Além disso, é responsável por cerca de 25% das emissões de CO₂ do setor industrial.

Figura 1: Total de emissões por setor em 2019

Emissões de CO2 no Mundo em 2019

Wang (2017) afirma que o alto-forno é o processo de conversão dominante para a produção de aço atualmente e continuará sendo por muito tempo. O Alto-forno produz mais de 94% do ferro-gusa em todo o mundo, cujo consumo de energia e emissão de CO_2 representam cerca de 70% das atividades em uma siderúrgica (Orth, 2007). A figura 2 mostra as emissões de CO_2 em uma siderúrgica por processos.

Recentemente problemas ambientais como aquecimento global e poluição do ar tornaram-se cada vez mais sérios e atraíram ampla atenção da comunidade global. A mitigação das emissões de CO₂ tornou-se uma questão importante para o futuro do planeta, principalmente após a Conferência de Paris em 2015.

A partir da COP 21, realiza em Paris em 2015, onde foi assinado o chamado Acordo de Paris, os países têm buscado medidas mais efetivas para reduzir suas emissões visando limitar o aquecimento global em 2°C até 2100. Muitos países traçaram metas individuais de redução de emissões. O Brasil se comprometeu a reduzir em 37% as emissões de CO_2 até 2025 e em 43% até 2030.

Ju (2021) lembra que a indústria é o principal setor onde os esforços de descarbonização devem ser concentrados, a siderurgia encabeça a lista. O autor ainda afirma que é extremamente difícil a descarbonização a curto prazo da siderurgia, principalmente nos países em desenvolvimento como China, Brasil e Índia. Por fim, cita que, para países como o Brasil, onde há grande disponibilidade, a biomassa pode ser estratégica tanto para a siderurgia quanto para a produção de energia elétrica, porém pontua que o uso é limitado.

O uso de combustíveis renováveis na siderurgia vem sendo buscado em todo o mundo visando a produção do chamado "aço verde" para garantir o desenvolvimento sustentável do setor. Nesse sentido, o uso de biomassas parece ser a melhor rota limpa possível, no curto prazo, para a produção econômica de ferro primário.

A biomassa pode ser definida como a massa total de substâncias orgânicas que ocorrem em um habitat. As formas de biomassa em nosso planeta são muitas e variadas. De acordo com sua origem, as biomassas são divididas em quatro categorias: culturas para produção de energia, resíduos pós-colheita, subprodutos orgânicos e resíduos orgânicos. Para utilização da biomassa nos processos siderúrgicos, as categorias mais interessantes são as colheitas para energia e os resíduos pós-colheita, que são os tipos de biomassa que serão tratados neste trabalho.

As biomassas, quando comparadas aos combustíveis fósseis utilizados na indústria siderúrgica (coque e carvão), possuem menores teores de carbono, enxofre, cinzas, poder calorífico e um maior conteúdo de voláteis, hidrogênio e oxigênio. Porém, o grande ganho em substituir parte do carvão mineral por biomassa na produção de coque metalúrgico é, sem dúvida, na questão ambiental. O que faz a biomassa ser considerada neutra em emissões de CO_2 é o chamado ciclo do carbono. A queima da biomassa provoca a liberação de CO_2 na atmosfera. Porém, as plantas, através da fotossíntese, transformam CO_2 e água nos hidratos de carbono, que compõem sua massa viva, liberando oxigênio. Sendo assim, a utilização da biomassa, de maneira não predatória, não altera a composição média da atmosfera ao longo do tempo. Nesta abordagem, o balanço de GGE é negativo, o que significa que

o sequestro geral de CO_2 da atmosfera para o cultivo de biomassa é maior do que as emissões de CO_2 durante o processo de produção.

A combinação de tecnologias energéticas mais eficientes, como o uso de biomassa, cogeração de energia, otimização do ciclo de vida do material e, eventualmente, o sequestro de carbono pode resultar em reduções significativas no consumo de energia e na quantidade de emissões de dióxido de carbono. Cabe ressaltar que o uso de desse potencial pode apresentar custos elevados em um primeiro momento, pois esse cenário está em desenvolvimento no mundo e ainda requer pesquisa e investimento.

Nos últimos anos, inúmeras pesquisas e trabalhos têm sido realizados na área de caracterização e utilização de biomassa na indústria siderúrgica. Muitos deles apontam que a biomassa pode ser utilizada em diversos processos de obtenção de aços, como alto-forno, coqueria, sinterização e outros processos. Neste capítulo será discutido o uso da biomassa no processo siderúrgico em substituição aos combustíveis fósseis, considerados a principal fonte de emissão de gases de efeito estufa do setor. Será mostrado as pesquisas que vêm sendo desenvolvidas e as possibilidades encontradas, além de uma avaliação econômica e ambiental. Será possível ver que a biomassa se apresenta como uma alternativa viável a curto prazo, principalmente para países onde a disponibilidade é grande.

2. USO DE BIOMASSA NOS PROCESSOS SIDERURGICOS

O uso de biomassa é o método mais antigo para fornecimento de energia para a humanidade. No entanto, o uso da biomassa como fonte renovável e universal de energia deve passar por um desenvolvimento tecnológico e de fornecimento.

O número de pesquisas sobre o uso de biomassa nos processos vem crescendo nos últimos anos, visto o aumento da procura por soluções menos poluentes para o setor. Em uma pesquisa simples na base de trabalhos acadêmicos *SCOPUS* foi encontrado 1681 trabalhos utilizando as palavras *Biomass* e *Steel* unidas pelo operador Booleano de soma *AND*. A pesquisa foi limitada a partir de 1994 até 2020 e alguns resultados importantes podem ser vistos na figura 3.

Figura 3: (a) Número de trabalhos por ano; (b) número de trabalhos por país

Nota-se que o número de estudos envolvendo o uso de biomassa na siderurgia vem aumento e o Brasil figura entre os cinco países que mais vêm estudando sobre o assunto.

A biomassa pode se tornar estratégica a partir do momento em que for usada para substituir, em partes, as funções químicas e térmicas do carvão mineral. A análise da qualidade das biomassas como matéria-prima alternativa para a obtenção do coque metalúrgico através de softwares de modelação matemática, pode auxiliar no planejamento dos prazos no que se trata da previsão do custo de transporte e da sua disponibilidade no pátio. Eles também ajudam a evitar a extração desenfreada dessa matéria alternativa. A tabela 1 mostra algumas propriedades de algumas biomassas que devem ser levadas em conta ao serem utilizadas na siderurgia.

Material	%Carbono fixo	%Cinzas	%Voláteis	%Enxofre	Referencias
Carvão Mineral	62,40	13,45	24,13	0,88	(CAMPOS, 2019)
Casca da Moringa Oleífera	22,00	2,36	76,60	0,83	(CAMPOS, 2019)
Carvão vegetal	66,47	7,73	25,80	0,11	(ASSIS, 2014)
Casca de Eucalipto	69,30	0,40	30,3	0,02	(SOUZA,2018)
Bagaço de cana	12,28	7,74	79,99	0,12	(DONG,2015)
Capim Elefante	16,55	13,50	69,95	0,19	(ASSIS, 2014)
Casca de Arroz	23,25	10,55	66,20	0,12	(ASSIS, 2014)
Sabugo de milho	18,32	1,16	81,31	0,30	(RAMOS e PAULA, 2011)
Palha de Milho	17,05	1,58	81,68	0,10	(RAMOS e PAULA, 2011)
Casca de soja	27,70	8,90	63,5	0,34	(SILVA,2008)

Tabela 1: Propriedades de algumas biomassas

É possível observar na tabela que:

i. O teor de matéria volátil nas biomassas é maior em relação ao carvão mineral;

ii. As cinzas nas biomassas são menores;

iii. O conteúdo de carbono na biomassa é menor que no carvão mineral;

iv. As biomassas possuem menor quantidade de enxofre se comparadas ao carvão mineral.

A biomassa pode ser utilizada em vários processos siderúrgicos, o que beneficia a produção sustentável do aço, além de reduzir os custos do processo. Porém, para que isso ocorra no curto prazo, é necessário que haja mais investimentos em estudos, principalmente em tecnologias para formulação de misturas alternativas para a fabricação do coque. Atualmente as siderúrgicas têm sido desafiadas a produzirem com baixo custo, alta qualidade e emitindo baixas quantidades de GEE na atmosfera (Campos, 2019a).

Neste contexto será apresentado a seguir diversos trabalhos onde foi proposto o uso de biomassa como material substituto do carvão mineral.

2.1. Uso de Biomassa na Coqueria

A coqueria é um grande consumidor de carvão mineral, uma vez que o seu processo consiste basicamente na destilação deste material tendo como produto o coque. O coque deve ter as seguintes funções: combustível, fornecendo calor para reações químicas endotérmicas e para fusão de escória e metal; atuar como um agente redutor químico, fornecendo gases para reduzir os óxidos de ferro; serve como meio de suporte para os materiais de carga que suportam a carga metálica, proporcionando a matriz permeável que permite que a escória líquida e o ferro-gusa descendam e permite a ascensão dos gases.

A utilização de biomassa na produção de coque não se dá de maneira simples. A biomassa não possui as propriedades plásticas características dos carvões minerais. Sendo assim, qualquer adição de biomassa causa em uma queda de qualidade do coque, independentemente da quantidade. Com isso, o desafio buscar inserir uma quantidade de biomassa que não inviabilize sua utilização no alto-forno e que gere economia e diminuição no consumo de combustível fóssil.

Diversos trabalhos utilizando a adição de biomassa em misturas de carvão mostram que é possível adicionar até 10% na fabricação de coque, obtendo bons resultados. Na Figura 4 são mostrados uma compilação de trabalhos realizados que mostram o CSR (*Coke Strenght after Reaction*) e CRI (*Coke Reativity Index*) de coques produzidos com adição de biomassa.

Figura 4: CSR e CRI de coques produzidos com adição de biomassa

Vale ressaltar que o CRI e o CRS possuem alto índice de correlação, o que indica que, teoricamente, apenas um desses índices é suficiente para avaliar o coque. Como foi visto em todos os trabalhos apresentados, quando CRI aumenta o CSR diminui, sendo assim o que mais comumente é adotado para controle da qualidade do coque no alto-forno é o CRS.

Devido a esta estrutura com muitos poros, a superfície de contato com os gases é maior, sendo assim a biomassa fica mais reativo. Além disso, esta estrutura acaba por ser menos resistente, impactando decididamente nos parâmetros de CSR, assim como o CRI. Além disso, quando a biomassa com maior tamanho de partícula foi utilizada, a diminuição do CSR foi menor que nos coques produzidos com biomassa de partículas finas. Esse fenômeno foi associado ao fato de as partículas maiores possuírem uma área superficial menor, de modo que terem menor interação com o CO₂.

Outro ponto importante é o teor de enxofre, que não é desejado na produção de ferro gusa. Sempre ao adicionar biomassa na mistura de carvão haverá uma diminuição no teor de enxofre da mistura, conforme é mostrado na figura 5.

Ao diminuir o teor de enxofre é possível abrir espaço para carvões minerais com um teor de enxofre um pouco maior na mistura, isto porque este tipo de carvão costuma ser mais barato no mercado proporcionando economia para o processo. Além disso, um teor menor de enxofre favorece uma produção mais eficiente no alto-forno, uma vez que será formado menos quantidade de escoria e um ferro-gusa mais limpo em relação a esta impureza.

Em suma, os estudos apresentados mostram que o biocoque, coque produzido com adição de biomassa, pode ser um substituto adequado para os combustíveis fósseis convencionais com potencial para reduzir as emissões de CO₂ na indústria siderúrgica.

2.2. Uso de biomassa na Sinterização

O processo de sinterização é um processo bem estabelecido em uso nas usinas siderúrgicas integradas. Consiste em uma aglomeração por meio de uma fusão oxidante/redutora de finos de minério de ferro (*sinter feed*) e fundentes (cal, calcário, etc.), bem como outros materiais (poeira, lama, etc.) em temperaturas entre 1200 °C a 1400 °C. Um combustível sólido à base de carbono (geralmente o coque *breeze*) é adicionado a esta mistura para fornecer a energia necessária para fazer as reações do processo acontecerem (Abreu, 2015).

Na sinterização, as misturas podem ser adicionadas substituindo parte do coque *breeze* usado, onde teria a mesma função deste combustível fóssil. A Figura 8 mostra um gráfico onde realizaram testes em escala piloto comparando a velocidade de sinterização e a produtividade, substituindo parte do coque *breeze* pelo carvão vegetal. Percebe-se que a velocidade aumenta devido ao potencial de queima de carvão vegetal, mas há uma diminuição da produtividade com o aumento da substituição de coque *breeze* por carvão vegetal, o que pode estar associado ao menor rendimento dos produtos sinterizados.

Figura 6: Variação dos parâmetros de sinterização com a adição de biomassa

O carvão vegetal apresentou maior produtividade, assim como maior velocidade, em relação a serragem carbonizada. De qualquer forma, pode-se dizer que aproximadamente 40 % do coque *breeze* pode ser substituído por carvão vegetal e 20% por serragem carbonizada sem que haja perdas na qualidade do sínter produzido.

Jah, 2017 conclui em seu trabalho que as principais vantagens de se usar biomassa na sinterização são que a biomassa tem maior conteúdo de hidrogênio, que pode fornecer uma melhor e uniforme ignição e uniforme ao processo. Já as desvantagens são ligadas ao armazenamento e indisponibilidade de desenvolvimentos tecnológicos necessários para a conversão de biomassa em combustível.

2.3. Uso de Biomassa no Alto-Forno

O uso de biomassa no alto-forno não é novo, o carvão vegetal foi o primeiro combustível destes reatores, mas perderam espaço após a revolução industrial com a ascensão do carvão mineral (Ricketts, 2000). Os altos-fornos a carvão vegetal são caracterizados por serem menores com produções em torno de 1000 toneladas de ferro-gusa por dia, enquanto os altos fornos a coque podem chegar a 13000. A grande vantagem de se usar o carvão vegetal é em relação as emissões CO₂, como o este material é uma biomassa pode ser considerado neutro. Já a limitação é relacionada a produtividade, muito menor que os altos-fornos a coque, e a necessidade de disponibilidade de terras nas proximidades das usinas para plantação da madeira e conversão em carvão vegetal.

Mousa, 2016 mostra um balanço de emissões de CO_2 na produção de ferro-gusa via alto-forno a carvão vegetal, onde sugere que o balanço é positivo devido a absorção de CO_2 e liberação de O_2 durante a fotossíntese. A figura 7 mostra um desenho esquemático onde pode ser visto esses números.

Figura 7: Balanço de emissões na produção de Ferro-gusa via alto-forno a carvão vegetal

Como boa parte da produção se dá pelo de alto-forno a coque, a grande oportunidade de utilizar a biomassa pode ser pelas ventaneiras, através da injeção de materiais pulverizados. Nesta técnica é possível adequar a quantidade injetada de acordo com a disponibilidade de biomassa para este fim. Para ser injetada, a biomassa deve apresentar algumas características como: baixo teor de cinzas, alto teor de carbono, granulometria adequada e bom poder calorífico. Algumas biomassas apresentam condições favoráveis para injeção, mas tratamentos como torrefação e carbonização podem ser realizados previamente para melhorar as propriedades destes materiais (Campos, 2021).

Um teste muito interessante para avaliar as condições de injeção desses materiais é a simulação física de injeção de materiais pulverizados. Muitos testes foram realizados, principalmente a partir de resíduos do agronegócio, na Universidade Federal de Ouro Preto, no laboratório de simulação de injeção de materiais pulverizados onde é possível simular as condições da zona de combustão do alto-forno. A Figura 8 ilustra alguns resultados obtidos em simulações feitas no laboratório da Universidade Federal de Ouro Preto, no laboratório de simulações de zona de combustão do alto-forno. A Figura 8 ilustra alguns resultados obtidos em simulações feitas no laboratório da Universidade Federal de Ouro Preto para alguns rejeitos do agronegócio.

Figura 8: Simulação de injeção para diferentes tipos de biomassas e taxas de injeção

Estes testes nos mostram qual a capacidade de queima este material possui dentro da zona de combustão. É possível notar que as biomassas possuem uma boa eficiência de combustão e que esta vai diminuindo à medida que a taxa de injeção aumenta, fato normal pois aumenta a quantidade de material, em temperaturas inferiores, injetados na zona de combustão.

A avaliação do uso da biomassa no alto-forno deve levar em conta também a disponibilidade de material, pois é um reator sensível a mudanças abruptas de materiais com características muito diferentes. Sendo assim uma análise mais detalhas, tanto técnica, como econômica e ambiental devem
ser feitas para que que a substituição do carvão mineral ocorra com mais segurança.

3. ASPECTOS ECONÔMICOS E AMBIENTAIS

Para a produção de 1 tonelada de aço bruto são emitidos cerca de 1830 kg de CO_2 (World Steel Association, 2019). Considera-se que as emissões de CO_2 na queima das biomassas seja a mesma quantidade daquela absorvida durante a fotossíntese, ou seja, o balanço de emissões de CO_2 é nulo. Levando em conta que para produção de 1 tonelada de ferro-gusa utiliza-se 560kg de carvão mineral (360kg no coque e 200kg na injeção com média de 80% de teor de carbono) e que substituindo 5% e 40% do carvão mineral por biomassa na coqueria e na injeção de material pulverizado, respectivamente, 100kg de carvão mineral deixariam de ser queimados no processo.

O cálculo das emissões de CO_2 pode ser feito de acordo com a equação (1) apresentada por (Rodrigues, 2016):

$$E_{CO_2} = \frac{QCx44}{12}$$
(1)

onde QC é a quantidade de carbono no combustível em kg. Sendo assim, as emissões passariam de 1640kg com 100% carvão mineral para 1350kg com a substituição de 100kg de biomassa.

Nota-se que o uso parcial da biomassa no alto-forno pode contribuir para a redução de cerca de 18% das emissões de CO_2 . Obviamente estudos maiores devem ser feitos para a utilização de biomassa em conjunto no alto-forno assim como toda análise de viabilidade técnica e econômica para esta utilização.

O uso de biomassa na siderurgia pode trazer, não só ganhos ambientais, também ganhos econômicos no que diz respeito aos custos de material redutor para o processo. Para o Brasil, o uso de biomassa na siderurgia pode ser uma grande oportunidade uma vez que o possui uma enorme reserva de recursos naturais, sendo um dos maiores produtores agrícolas do mundo. Além disso, o Brasil não possui reservas consideráveis de carvão mineral metalúrgico sendo obrigado a importar a preços elevados de países como Austrália, Estados Unidos e Colômbia.

No Brasil o preço médio da tonelada de carvão mineral metalúrgico gira entre 200 dólares. Para as biomassas não se tem preços bem definidos uma vez que podem estar ligados apenas ao transporte e preparação do material antes da utilização, mas pode-se dizer que a biomassa já pronta para o uso na siderurgia está entre 120-160 dólares a tonelada (Suopajärvi, 2017).

Considerando que para a produção de uma tonelada de aço bruto seja necessário 650kg de carvão mineral e que parte desse carvão possa ser substituído por biomassa, no mesmo cenário apresentado anteriormente, tem-se então que para essa produção será usado 400kg de carvão mineral e 250kg de biomassa. Considerando os custos ligados a essas matériasprimas, conforme citado anteriormente, para a produção de uma tonelada de aço bruto o custo com o redutor passaria de 162 dólares para 130 dólares. Uma economia de 30 dólares por tonelada de aço bruto. Pode parecer pouco, mas, ao considerar uma siderúrgica que produz 1 milhão de toneladas de aço anuais, a encomia pode chegar a 30 milhões de dólares.

A economia com a substituição parcial do carvão mineral pode girar em torno de 20%, porém, são necessários estudos de viabilidade logística e de possíveis investimentos para o tratamento dessas biomassas antes da sua utilização, o que geraria economias a médio e longo prazo.

4. CONCLUSÕES

Pode-se concluir que, ao substituir o coque pelo carvão vegetal, há um efeito positivo no balanço de emissões de CO2

Em relação ao uso de biomassa na coqueria, pode ser interessante substituir cerca de 2% a 5% do carvão mineral por biomassa.

As biomassas podem ser utilizadas no processo de produção de aço, obtendo reduções nas emissões de CO2, em torno de 40% e nos custos dos processos da ordem de 20%.

A localização e o espaço disponível para a produção de biomassas para este uso devem ser analisados sendo que os custos das biomassas estão associados ao fornecimento e pré-tratamento do material.

REFERÊNCIAS

ABREU, G.C.; CARVALJO JR., J.A.; SILVA, B.E.C.; PEDRINI, R.H. **Operational and environmental assessment on the use of charcoal in iron ore sinter production**. Journal of Cleaner Production, v.101, p. 387-394, abr. 2015.

ASSIS, C., TENÓRIO, J., ASSIS, P., NATH, N. Experimental simulation and analysis of agricultural waste injection as an alternative fuel for blast furnace. ACS Energy&Fuels, v.28, p. 7268-7273, 2014.

CAMPOS, A. A. C.; et al. Economic and environmental analyses of biomass torrefaction for injection as pulverized material in blast furnaces. REM - International Engineering Journal, v. 74, n. 4, p. 471-482, set. 2021.

CAMPOS, A. M. A., ASSIS, P. S., NOVACK, K. M. **Avaliação Técnica E Ambiental Da Injeção Da Casca Da Moringa Oleífera Em Altos-Fornos A Coque**. Tecnologia Em Metalurgia Materiais e Mineração, v. 16(Especial), 2019.

CAMPOS, A.M.A., CARVALHO, L.A.L., OLIVEIRA, L.F.C., ASSIS, P.S. Potencial Uso De Resíduos Agrícolas Como Material Pulverizado Para Injeção Em Altos-Fornos, p. 81-89. In: 49° Seminário de Redução de Minérios e Matérias-primas, São Paulo, 2019a.

DONG, L. Impact of Torrefaction on Grindability, Hydrophobicity and Fuel Characteristics of Biomass Relevant to Hawaii 'I. 2015. 105f. Master's degree dissertation in Mechanical Engineering. University Of Hawai'i at Mānoa. 2015.

FAN, X.; JI, Z.; GAN, M.; CHEN, X.; YIN, L.; JIANG, T. Characteristics of prepared coke-biochar composite and its influence on reduction of NOx emissions in iron ore sintering. ISIJ Int., v. 55, n.3, p. 521-527, 2015.

GAN, M.; FAN, X.; CHEN, X.; JI, Z.; WANG, Y.; YU, Z.; JIANG, T. Reduction of pollutant emission in iron ore sintering process by applying biomass fuels. ISIJ Int., v. 52, n.9, p. 1574-1578, 2012.

IRENA. Reaching zero with renewables: **Eliminating CO₂ emissions from industry and transport in line with the 1.5 °C climate goal**. International Renewable Energy Agency, Abu Dhabi, 2020. Disponível em: https://www.irena.org/-/media/Files/IRENA/ Agency/Publication/2020/Sep/IRENA_Reaching_zero_2020.pdf>. Acesso em: 28/09/2021.

JAH, G.; SOREN, S. **Study on applicability of biomass in iron ore sintering process**. Renewable and Sustainable Energy Reviews, v.80, p. 399-407, mar. 2017.

JAH, G.; SOREN, S. **Study on applicability of biomass in iron ore sintering process**. Renewable and Sustainable Energy Reviews, v.80, p. 399-407, mar. 2017.

JU, Y.; SUGIYAMA, M.; KATO, E.; MATSUO, Y.; OSHIRO, Y.; HERRAN, D.S. Industrial descarbonization under Japan's national mitigation scenarios: a multi-model analysis. Sustainability Science, v. 16, p. 411-427, 2021.

MONTIANO, M.G.; DÍAZ-FAES, E.; BARRIOCANAL, C.; ALVAREZ, R. Influence of biomass on metallurgical coke quality. Fuel, v.116, p. 537-543, 2014.

MOUSA, E.; WANG, C.; RIESBECK J.; LARSSON, M. **Biomass applications in iron** and steel industry: An overview of challenges and opportunities. Renewable and Sustainable Energy Reviews, v. 65, p. 1247-1266, 2016.

OLIVEIRA, R.S.; ASSIS, C.F.C.; ASSIS, P.S. **Estudo Da Injeção De Misturas De Casca De Eucalipto Com Carvão Mineral Em Alto-Forno.** Tecnol. Metal. Mater. Min., v. 13, n. 2, p. 130-135, abr./jun. 2016.

ORELLANA, D. R. Incorporação da Moinha de Carvão Vegetal na Produção de Coques em forno Piloto. 2016. 114 f. Dissertação (Mestrado) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais– Universidade Federal do Rio Grande do Sul. 2016.

ORTH, A.; ANASTASIJEVIC, N.; EICHBERGER, H. Low CO2 emission technologies for iron and steelmaking as well as titania slag production. Minerals Engineering, v. 20, n. 9, p. 854-861, 2007.

QUIN, L.; HAN, J.; YE, W.; ZHANG, S.; YAN, Q.; YU, F. Characteristics of coal and pine sawdust Co-carbonization. Energy Fuels, v. 28, n.2, p. 848-857, 2014.

RAMOS e PAULA, L. E. de et al. **Characterization of Residues from Plant Biomass for Use in energy Generation**. Cerne, Lavras, v. 17, n. 2, p. 237-246, abr./jun. 2011.

RICKETTS, John A. (2000) **History of Ironmaking**. Warrendale: Iron&Steel Society, 2000. 194p.

RODRIGUES, P.M.S.; SILVA FILHO, P.A. **Quantificação das emissões de dióxido de carbono (CO2) por veículos automotores na cidade de Boa Vista/RR- 2005-2015**. 7º Congresso Luso Brasileiro para o Planejamento Urbano, Integrado e Sustentável. Maceió-AL. 05 a 07 de outubro de 2016.

SILVA, A. M. et al. Estudo Da Utilização Da Biomassa Em Substituição Parcial Ao Carvão Mineral Na Fabricação Do Coque na Coqueira da Csn. Tecnologia em Metalurgia e Materiais, v. 5, n. 1, p. 40–45, 2008.

SILVA, A. M. Estudo da utilização da biomassa em substituição parcial ao carvão mineral no processo de fabricação do ferro gusa em alto-forno. 2008. 147 f. Tese (Doutorado) – Programa de pós-graduação em engenharia Mecânica, Universidade Estaual Paulista. 2008a.

SILVA, G.L.R.; BRAGA, E.M.H.; ASSIS, P.S.; QUINTAS, A.C.B.; DORNELAS, P.H.G.; MOURA, L.C.A.; SOUZA, R.D.S. **Utilização de finos de carvão vegetal para produção de biocoque metalúrgico**. ABM Week. Rio de Janeiro, RJ, Brasil, 2016.

SOUZA, R. D. S. **Utilização De Biomassa De Eucalipto Na Produção De Coque Metalúrgico**, p. 7-9. In: 48° Seminário de Redução de Minérios e Matérias-primas, São Paulo, 2018.

SUOPAJÄRVI, H.; KEMPPAINEN, A.; HAAPAKANGAS, J.; FABRITIUS, T. Extensive review of the opportunities to use biomass-based fuels in iron and steelmaking processes. Journal of Cleaner Production, v.148, p.709-734, 2017.

WANG, H.; ZHAO, W.; CHU, M.; FENG, C.; LIU, Z.; TANG, J. Current status and development trends of innovative blast furnace ironmaking technologies aimed to environmental harmony and operation intellectualization. Journal of Iron and Steel Research international, v. 24, p. 751-769, 2017.

WORLD STEEL ASSOCIATION. **Our Indicators**. [S.1]: WSA, 2019. Disponível em: https://www.worldsteel.org/steel-by-topic/sustainability/sustainability-indicators.html. Acesso em: 27 out. 2021, 20:40.

USE OF BIOMASS IN IRON AND STEELMAKING

ABSTRACT – In integrated steel mills, coal coke plays a fundamental role, mainly in the production of metallurgical coke that will be used in blast furnaces, for the production of

pig iron. In addition, coal is used in the injection of pulverized inoculants, and in some cases in sintering. The great challenge of the sector is to produce steel at competitive prices, looking for raw materials at a lower cost and optimizing its processes. Another challenge is related to CO_2 bases. The steel industry is responsible for about 10% of CO_2 inputs in the world and needs to review its processes and raw materials to adapt to the new environmental order in the world. One of the short-term strategies for the steel industry, especially in countries like Brazil, is a replacement of part of the coal used by biomass. Biomass is considered neutral in terms of CO_2 requirements, due to its capture during the photosynthesis process, which makes it attractive for use in steelmaking processes. In addition, its use can generate cost savings, especially if it is considered agribusiness tailings that do not have a high added value. In this context, this chapter will show some possible uses of biomass in steelmaking processes through studies that have been carried out on the subject and applications in industry. It will be possible to notice that the use of biomass is a viable alternative in the short term to meet the current environmental growth.

KEYWORDS: Biomass; Biofuels; Steel; Coal; Greenhouse gases.

CAPÍTULO 3

ESPESSURA E MORFOLOGIA DOS ÓXIDOS DE ESTANHO CRESCIDOS POR VOLTAMETRIA EM SOLUÇÃO FOSFATO pH 8,7

Tiago Brandão Costa lattes.cnpq.br/3243521723505701

Escola de Engenharia Industrial Metalúrgica de Volta Redonda – Departamento de Engenharia Metalúrgica e Materiais – Universidade Federal Fluminense, Volta Redonda, Rio de Janeiro

Tania Maria Cavalcanti Nogueira lattes.cnpg.br/1309300835320812

Escola de Engenharia Industrial Metalúrgica de Volta Redonda – Departamento de Engenharia Metalúrgica e Materiais – Universidade Federal Fluminense, Volta Redonda, Rio de Janeiro

RESUMO \cap crescimento voltamétrico de óxido de estanho em solução tampão fosfato, pH 8,7 foi estudado. Medidas elipsométricas ex-situ foram realizadas para determinar a espessura dos óxidos crescidos. A partir desses resultados, o volume do filme por unidade de carga, V_f, foi calculado para diferentes densidades de carga. As medidas elipsométricas mostram que filmes de óxido de estanho crescidos a 2 mVs⁻¹ são menos densos para valores de espessura 3,37 nm, tendo

V, próximo a 1,70 x 10⁻⁴ cm³C⁻¹. Para valores mais altos de espessura (11.0 – 12.4 nm) os filmes se tornam mais densos tendo V, próximo a 0,5 x 10⁻⁴ cm³C⁻¹. No caso de 100 mVs⁻ os filmes apresentam o mesmo comportamento, tendo V, próximo de 3,74 x 10⁻⁴ cm³.C⁻¹ para espessura de 4,56 nm e V, próximo de 1,32 x 10⁻⁴ cm³.C⁻¹ para espessura de 7,42 nm. Imagens de Microscopia de Forca Atômica mostraram que a morfologia muda e a rugosidade dos filmes aumenta com o aumento da espessura e do potencial final da voltametria.

PALAVRAS-CHAVE: MFA; Elipsometria; Óxido de estanho; Voltametria.

1. INTRODUÇÃO

O estanho é um metal resistente à corrosão devido à natureza e propriedades do seu filme de passivação. Por esse motivo é amplamente usado na indústria em muitas aplicações, por exemplo, como revestimento sobre aço, no caso de folhas-de-flandres destinadas à fabricação de latas para alimentos (BLUNDEN e WALLACE 2003), ou na indústria eletrônica (ZHANG, *et al.* 2016). Deste modo, os estudos sobre o comportamento eletroquímico do estanho que levam a sua passivação, assim como a composição desses filmes, são de grande interesse.

De acordo com diagrama de Pourbaix (1966) o estanho se passiva em soluções neutras. Em valores de pH ácido seus óxidos ou hidróxidos se dissolvem como Sn⁺² ou Sn⁺⁴ e em soluções fortemente alcalinas como estanitos ou estanatos.

Duc e Tissot estudando a oxidação do estanho em soluções neutras de fosfato sugeriram a presença de Sn(OH), ou SnO e Sn(OH), ou SnO, na superfície do eletrodo no início da polarização anódica (DUC e TISSOT 1979). A potenciais mais anódicos apenas espécies estânicas são formadas. O comportamento eletroquímico do estanho também tem sido estudado em soluções aguosas alcalinas na faixa de pH 8-9 (KAPUSTA e HACKERMAN 1980), (METIKOS-HUKOVIC, RESETIC. e GVOZDIC. 1995), (GERVASI e ALVAREZ 2005), (BRUNETTI e TEIJELO 2008), (KAPUSTA e HACKERMAN 1980), (METIKOS-HUKOVIC, SERUGA e FERINA 1992), (DÍAZ, *et al.* 2004). Os autores consideraram que a passivação primária ocorre devido à formação de um filme de Sn (OH), ou SnO por um mecanismo de dissoluçãoprecipitação. A passivação final é caracterizada por um filme contínuo de Sn (OH), (KAPUSTA e HACKERMAN 1980). Assim, espécies mais estáveis como SnO, ou SnO, H₂O podem ser formadas a partir da desidratação desse último filme (POURBAIX 1966). Alguns autores sugerem a formação de um filme duplex (METIKOS-HUKOVIC, SERUGA e FERINA 1992), consistindo de 5SnO.2H₂O e SnO₂.H₂O (AMMAR, KHALIL e EL-TAHER 1988).

Além da composição, a espessura e densidade dos filmes de passivação do estanho são igualmente importantes do ponto de vista da resistência à corrosão.

Brunetti e Teijelo (2008) estudaram o crescimento voltamétrico dos filmes de óxido/hidróxido de estanho em soluções de borato (pH 8,9). As espessuras dos filmes crescidos a 50 mVs⁻¹ a distintos potenciais finais foram determinadas por medidas de elipsometria *in-situ*. Concluiu-se que na faixa de potencial -0,2V a -1,8V, medidos contra um eletrodo de referência Hg/ Hg₂SO₄/Na₂SO₄ (1M), o óxido de estanho cresce como um filme contínuo seguindo uma lei cinética correspondente a alto-campo como um típico metal válvula (BRUNETTI e TEIJELO 2008).

Costa, *et al.* (2016) recentemente estudaram as espessuras de filmes de óxido de estanho crescidos por voltametria a 2 mVs⁻¹ em solução tampão fosfato, pH 8,7, foram medidas por elipsometria *ex-situ*. A condição *ex-situ* foi escolhida com o objetivo de verificar a passivação permanente do estanho na atmosfera. A partir desses dados de espessura, juntamente com a densidade de carga do filme, q_r, foi possível calcular o volume do filme por unidade de carga do filme, V_r, de acordo com a Equação (1), (D'ALKAINE, TULIO e BERTON 2004).

(1)

$$V_f = \frac{\ell}{q_f}$$

Onde ℓ é a espessura do filme.

Esse parâmetro informa sobre a densidade do filme. Esses resultados mostraram que o filme é menos denso para valores menores que 0,50 mCcm⁻² com V_f em torno de 5,7 x10⁻⁴ cm³C⁻¹. Para valores maiores de densidade de carga o filme se torna mais denso com valores de V_f em torno de 0,5x10⁻⁴ cm³C⁻¹ (COSTA, CAVALCANTI e SILVA 2016).

Com o objetivo de melhor caracterizar o filme de passivação do estanho, no presente trabalho a rugosidade e a topografia dos filmes de óxidos de estanho crescidos por voltametria a $2mVs^{-1}$ em solução tampão fosfato, pH 8,7, foram investigadas por Microscopia de Força Atômica (AFM). As espessuras dos óxidos crescidos por voltametria a 100 mVs⁻¹ na mesma solução também foram investigadas por medidas de elipsometria, *ex-situ* e o V_f desses filmes foram determinados. A rugosidade e a topografia dos filmes foram igualmente estudadas por AFM.

2. MATERIAIS E MÉTODOS

Para execução dos ensaios eletroquímicos foi utilizado uma célula eletroquímica a três eletrodos. Como eletrodo de trabalho, utilizou-se uma barra de Sn com pureza de 99,990%, montada em um suporte de Teflon, expondo uma área circular de 0,50 cm². Como eletrodo de referência utilizou-se o eletrodo de Hg/HgCl₂/ KCl 1,0M. O contra eletrodo utilizado nos ensaios foi um fio de platina embutido em vidro de chumbo.

Os ensaios eletroquímicos foram realizados utilizando-se um potenciostato PAR modelo 273 – A. No preparo das soluções foram usados reagentes PA e água purificada (Milipore Q System). O eletrólito foi uma solução tampão fosfato $Na_2H_2PO_4$ 0,18M + KH_2PO_4 0,18M, pH = 8,7.

As voltametrias anódicas foram realizadas a 2 e a 100 mVs⁻¹ sempre sobre a mesma superfície. Para evitar a mudança de rugosidade da superfície, anteriormente a cada voltametria, o filme de óxido crescido na voltametria anterior era reduzido a potencial catódico constante igual -1,2V durante 10 minutos.

As medidas de espessura foram determinadas a partir de um elipsômetro SEMILAB, modelo SOPRA GES 5E, equipado com uma lâmpada Xe, e um espectro de 195 – 1.000 nm. As espessuras dos filmes foram medidas, *ex-situ* e em temperatura ambiente, usando um ângulo de incidência igual a 75°. Como uma técnica indireta, é necessário modelar a estrutura do material com suas camadas de filme em uma ordem para obter cada camada de espessura. As espessuras dos filmes de óxido de estanho foram obtidas através da análise dos espectros elipsométricos medidos através do modelo de Drude e Gauss (ASPNES 2014).

A análise dos óxidos de estanho crescidos voltametricamente em solução fosfato a 2 e 100 mV.s⁻¹ foram efetuadas através do Microscópio de Força Atômica Easy Can 2 Felx AFM com ponteira modelo Tap 190AI_G, modo contato.

3. RESULTADOS E DISCUSSÃO

A Figura 1 apresenta o voltamograma anódico dos óxidos de estanho a 2 mVs⁻¹ com os correspondentes potenciais finais, E_r.

Figura 1: Voltamograma anódico do crescimento de óxido de estanho a 2mV.s⁻¹, junto com a indicação do potencial final nos quais as densidades de carga dos filmes foram calculadas

Na Tabela 1 são apresentados os valores dos $E_f e$ das densidades de carga dos filmes de óxido de estanho indicados nas Figuras 1.

 Tabela 1: Valores dos potenciais finais e das densidades de carga dos filmes de óxido de estanho crescidos a 2mVs⁻¹

2 mVs ^{.1}				
E _f / V	q _f / mCcm⁻²			
-0,850	0,59			
-0,810	2,66			
-0,796	5,12			
-0,730	12,92			
-0,30	21,50			

A Figura 2 apresenta as imagens de AFM para (A) filme crescido na atmosfera para 24 horas e (B) filme crescimento voltametricamente a 2 mVs⁻¹ até (b) 0,59 mCcm⁻², (C) 5,12 mCcm⁻² e (D) 26,81 mCcm⁻².

Figura 2: Imagens de AFM para os filmes de óxido de estanho crescidos voltametricamente a 2 mVs⁻¹ para (A) filme crescido na atmosfera e (B) 0,59 mCcm⁻², (C) 5,12 mCcm⁻², (D) 26,81 mCcm⁻²

Na Figura 2 (A), é mostrado o filme crescido na atmosfera com espessura próxima de 2 nm. Observa-se na superfície do eletrodo riscos provenientes do polimento da superfície. Na Figura 2 (B), $q_f = 0.59 \text{ mCcm}^{-2}$ e (C) $q_f = 5.12 \text{ mCcm}^{-2}$, esses riscos não são mais vistos. Esses resultados mostram que o filme é contínuo mesmo no caso de baixas densidades de carga. Na Figura 2 (D) $q_f = 26.81 \text{ mCcm}^{-2}$ pode-se observar uma mudança na topografia do filme.

De acordo com trabalhos anteriores (COSTA, NOGUEIRA e SILVA 2016), (COSTA, NOGUEIRA e SILVA 2017), a técnica elipsométrica foi usada para obter as espessuras dos filmes de óxido de estanho para várias densidades de carga considerando-se uma estrutura Sn / SnO / SnO₂ e usando as relações de dispersão de Drude e Gauss para o filme, (ASPNES 2014). As espessuras médias obtidas em trabalho anterior (COSTA, NOGUEIRA e

SILVA 2016), são mostradas na Tabela 2. Vale ressaltar que foram realizadas oito medidas para cada densidade de carga do filme. As rugosidades das superfícies foram determinadas de forma a completar estes dados. A Tabela 2 também mostra os valores médios de rugosidade determinados para uma área igual a 5µm x 5 µm das superfícies da Figura 2 (A - D).

Tabela 2: Densidades de carga, médias das espessuras e rugosidades para os filmes de óxido de estanho crescidos na atmosfera e voltametricamente a 2 mVs⁻¹

E _F / V	<i>q</i> _f / mCm ⁻²	Espessuras médias, nm	Rugosidades médias,
·			nm
-	atmosfera	2.00	5.87
- 0.850	0,59	3.37	8.28
- 0.796	5,12	4.29	11.03
0.100	26,81	12.40	14.69

Esses resultados mostram claramente que a rugosidade do filme muda atingindo valores mais altos conforme a espessura e a densidade de carga do filme aumentam. A Figura 3 ilustra esse comportamento.

A Figura 4 apresenta o voltamograma anódico dos óxidos de estanho a 100 mVs⁻¹ com os correspondentes potenciais finais, E_r. Na Tabela 3 são

apresentados os valores dos E_f e das densidades de carga dos filmes de óxido de estanho indicados nas Figuras 4.

Tabela 3: Valores dos potenciais finais e das densidades de carga dosfilmes de óxido de estanho crescidos a 100 mVs⁻¹

100 mVc-1

100 1143				
E _f / V q _f / mCcm ⁻²				
-0,735	1,22			
-0,600	3,22			
-0,300	5,60			

A Figura 5 apresenta as imagens de AFM para (A) os filmes de óxido de estanho crescidos voltametricamente a 100 mVs⁻¹ até 1,22 mCcm⁻² e (B) 5.60 mCcm⁻².

Capítulo 3

Figura 5: Imagens de AFM para os filmes de óxido de estanho crescidos voltametricamente a 100 mVs⁻¹ para (A) 1,22 mCcm⁻² e (B) 5,60 mCcm⁻²

Nas Figura 5 (A) e (B) os riscos do substrato devido ao polimento da superfície não podem mais ser observados, mesmo para o filme com a densidade de carga mais baixa, mostrando que os filmes crescidos a 100 mV s⁻¹ também são contínuos.

A Tabela 4 também mostra a espessura média e os valores médios de rugosidade determinados para uma área igual a 5μ m x 5μ m das superfícies.

Tabela 4: Densidade de cargas, médias das espessuras e rugosidades paraos filmes de óxido de estanho crescidos na atmosfera e voltametricamente a100 mVs⁻¹

<i>E</i> _F / V	<i>q</i> _f / mC cm ⁻² <i>Espessuras médias</i> , nm		Rugosidades médias, nm				
-	atmosphere	2,00	5,87				
-0,730	1,22	4,56	8,81				
-0,300	5,60	7,42	9,30				

Esses resultados mostram claramente que a rugosidade do filme muda atingindo valores mais altos conforme a espessura e a densidade de carga dos filmes aumentam. A Figura 6 ilustra este comportamento juntamente com os resultados obtidos na Figura 3.

Figura 6: Rugosidade *versus* Espessura dos filmes de óxido de estanho crescidos em solução tampão fosfato a 2 mVs⁻¹ e 100 mVs⁻¹

Usando os valores experimentais encontrados de espessuras médias e aplicando a Equação 1, o V_f foi determinado para os valores de densidade de carga de filmes crescidos por voltametria a 100 mV s⁻¹. Os resultados são mostrados na Tabela 5 e na Figura 7.

densidades de cargas a 100 mvs ⁻¹					
<i>q</i> _f / mC cm ⁻²	ℓ / nm	V _f / cm ³ .C ⁻¹			
1,22	4,56	3,74 X 10-⁴			
3,23	5,96	1,84 X 10⁴			
5,60	7,42	1,32 X 10-⁴			

Tabela 5: Volume do filme por unidade de carga obtidos a partir dasmedidas de espessuras dos filmes dos óxidos de estanho para diferentesdensidades de cargas a 100 mVs⁻¹

Figura 7: Volume do filme por unidade de carga do filme crescido em solução tampão fosfato, pH 8,7, para diferentes valores de espessura, (○) V_f experimental a 100 mV.s⁻¹, (----) V_f = 1,08 x 10⁻⁴ mC.cm⁻², considerando SnO e (--) V_f = 0,56 x 10⁻⁴ mC.cm⁻², considerando SnO₂

Os dados da Tabela 5 e da Figura 7 mostram que os valores de V_f diminuem até atingir 5,60 mCcm⁻² de densidade de carga do filme. Esses resultados mostram que o filme é menos denso para valores menores de densidade de carga e torna-se mais denso com o aumento da espessura. Este comportamento também foi observado no caso dos filmes crescidos a 2 mV s⁻¹ apresentados em trabalho anterior (COSTA, NOGUEIRA e SILVA 2016) e sugere que mudanças na composição do filme estão ocorrendo conforme o potencial torna-se mais anódico.

A Figura 8 apresenta a comparação dos resultados obtidos para V_f *versus* espessura no caso dos filmes crescidos a 2 mVs^{-1} (COSTA, NOGUEIRA e SILVA 2016) e 100 mVs⁻¹ (presente trabalho).

Figura 8: Volume do filme por unidade de carga do filme crescido em solução tampão fosfato, pH 8,7, para diferentes valores de espessura,
 (■) V_f experimental a 2 mV.s⁻¹ (○) V_f experimental a 100 mV.s⁻¹, (----) V_f = 1,08 x 10⁻⁴ mC.cm⁻², considerando SnO e (−) V_f = 0,56 x 10⁻⁴ mC.cm⁻², considerando SnO₂

Esses resultados estão mostrando que os filmes crescidos em velocidades de varredura mais altas são menos densos do que os filmes crescidos em velocidades de varredura mais baixas. Isso pode estar relacionado ao fato de que em velocidades de varredura mais altas, o crescimento do filme ocorre mais rápido do que em velocidades de varredura mais baixas, resultando em camadas de átomos menos organizadas. Pode-se observar também que o valor de V_f do filme crescido a 2 mV s⁻¹ torna-se próximo ao valor de V_f determinado considerando-se um filme de SnO₂, conforme aumenta a espessura. Quando os filmes crescem a 100 mV s⁻¹ este valor fica próximo ao valor de V_f considerando-se um filme de SnO. Esses resultados mostram que as densidades dos filmes podem ser influenciadas pela composição dos filmes.

4. CONCLUSÕES

Imagens de AFM mostraram que filmes de óxido de estanho crescidos por voltametria em solução de fosfato a 2 e 100 mVs⁻¹ são contínuos mesmo no caso de baixas densidades de carga (0,59 mCcm⁻² e 1,22 mCcm⁻²).

A rugosidade dos filmes aumenta conforme a espessura e a densidade de carga dos filmes aumentam, em ambos os casos (2 e 100 mVs⁻

¹). Ao mesmo tempo, os filmes ficam mais densos.

É importante ressaltar que o aumento da rugosidade dos filmes foi obtido com o aumento do potencial final da voltametria. Assim, não é possível desconsiderar a influência do potencial no processo de crescimento dos filmes. Seria interessante verificar se o crescimento do filme em potencial constante apresentaria o mesmo comportamento.

Os filmes crescidos a 100 mVs⁻¹ são menos densos do que os filmes crescidos a 2 mVs⁻¹. Isso pode estar relacionado ao fato de que em velocidades de varredura mais altas, o crescimento do filme ocorre mais rápido do que em velocidades de varredura mais baixas, resultando em camadas de átomos menos organizadas.

REFERÊNCIAS

AMMAR, S.I.A.; DARWISH, S.; KHALIL, M.W.; EL-TAHER, S. (1989) **A review on the electrochemistry of tin.** Materials Chemistry and Physics, v.21, p. 1 – 47, jan. 1989.

ASPNES, D.E. (2014) **Spectroscopic ellipsometry – Past, presente and future. Thin Solid Films**. Thin Solid Films, v. 571, Part 3, p. 334 – 344, nov. 2014.

BLUNDEN, S., WALLACE, T. (2003) Tin in canned food: a review and understanding of occurrence and effect, v. 41, p. 1651 – 1662, dez. 2014.

BRUNETTI, V.; TEIJELO, L. M. (2008) **Oxide/hydroxide films on tin: Part I: Kinetic aspects of the electroformation and electroreduction of the films**. Journal of Electroanalytical Chemistry, v. 613, p. 9 – 15, out. 2008.

BRUNETTI, V.; TEIJELO, L. M. (2008) **Oxide/hydroxide films on tin Part II: Characterization of the anodic growth in alkaline solutions.** Journal of Electroanalytical Chemistry, v. 613, p. 16 – 22, out. 2008.

COSTA, T.; NOGUEIRA, T. M. C.; SILVA, L. S. (2016) Ellipsometric measurement of thickness of tin oxide grown by voltammetry in phosphate solution of pH 8.7. Journal of Electrochemical Science and Engineering, v. 6 (4), p. 303 – 314, nov. 2016.

COSTA, T.; NOGUEIRA, T. M. C.; SILVA, L. S. (2017) Voltammetric growth of tin oxides in borate solution pf pH 8.7. Journal of Electrochemical Science and Engineering, v. 7 (2), p. 65 – 76, mai. 2017.

D'ALKAINE, C.V.; TULIO, P. C.; BERTON, M.C.A. (2004) **Quantitative Ohmic model** for transient growths of passivating films. The voltammetric case. Electrochimica Acta, v. 49, p.1898 – 1997, dez. 2004.

DUC, H; TISSOT, P. (1979) **Anodic behaviour of tin in neutral phosphate solution.** Corrosion Science, v. 19, p. 179 – 190, abr. 1978.

GERVASI, C.A.; ALVARE, P.E. (2005) Anodic oxide films on tin in carbonate -

bicarbonate buffer solution. Corrosion Science, v. 47, p. 69 – 78, jan. 2005.

METIKOS-HUKOVIC, M.; SERUGA, M.; FERINA, F. (1992) In situ investigation of duplex semiconducting films on tin. Berichte der Bunsengesellschaft/Physical Chememistry Chemical Physics, v. 96(6), p.799 – 805, jun. 1992.

METIKOS-HUKOVIC, M; RESETIC, A.; GVOZDIC, V. (1995) Behavior of tin as a valve metal. Electrochemica Acta, v. 40, p. 1777 – 1779, ago. 1995.

KAPUSTA, S.; HACKERMAN, N. (1980) **Photoelectrochemical studies of passivating films on tin in slightly alkaline solutions.** Electrochimica Acta, v. 25 (8) p. 1001 – 1006, ago. 1980.

KAPUSTA, S.; HACKERMAN, N. (1980) **Anodic passivation of tin in slightly alkaline solutions.** Electrochimica Acta, v. 25 (12), p.1625 – 1639, dez. 1980.

POURBAIX, M. (1974) Atlas of electrochemical equilibria in aqueous solutions, Michigan: National Association of Corrosion Engineers, 1974. 644p.

THICKNESS AND MORPHOLOGY OF TIN OXIDE GROWN BY VOLTAMMETRY IN PHOSPHATE SOLUTION pH 8.7

ABSTRACT – The voltammetry growth of tin oxides on tin in a buffer phosphate solution (pH 8.7) has been studied. *Ex-situ* ellipsometric measurements were made in order to determine the thickness of grown oxides. From these results, the volume per charge density of the film, V_f, was calculated for different charge densities of the film. The ellipsometric measurements showed that tin oxide films grown at 2 mVs⁻¹ are less dense for values of thickness of 3.37 nm, having V_f near 1.70 x 10⁻⁴ cm³.C⁻¹. For higher values of thickness (11.0 – 12.4), the films become denser having V_f near 0.5 x 10⁻⁴ cm³.C⁻¹ for thickness of 4.56 nm and V_f near 1.32 x 10⁻⁴ cm³.C⁻¹ for thickness of 7.42 nm. Microscopic Atomic Force images showed that morphology changes and roughness of the films increases with increasing thickness and final potential of the voltammetry.

KEYWORDS: AFM; Ellipsometry; Tin oxide; Boltammetry.

CAPÍTULO 4

APLICAÇÃO DA METODOLOGIA DE SUPERFÍCIE DE RESPOSTA PARA ESTUDO DO PROCESSO SÍNTESE DO NITRETO CÚBICO DE BORO - cBN UTILIZANDO Mg COMO CATALISADOR

Luã Monteiro Guimarães Nunes lattes.cnpq.br/2214927605580971

Universidade Estadual do Norte Fluminense Darcy Ribeiro – UENF/ LAMAV

Campos dos Goytacazes – Rio de Janeiro

RESUMO - O Nitreto cúbico de boro (cBN) é um material imprescindível para usinagem com alta precisão e alta velocidade de materiais ferrosos como aço, pois, diferentemente do diamante, o cBN não reage ao ferro sob determinadas temperaturas. conservando sua integridade física e estabilidade química durante o processo de corte e usinagem. Isso se traduz na capacidade de manter o qume de corte afiado e dimensões constantes na mecanização (corte. usinagem e polimento) do principal material utilizado na indústria, que é o aco. Além disso, o uso de insertos à base de cBN como ferramenta usinagem pode eliminar de а necessidade de retífica das pecas. o que economiza máquinas, mão de obra especializada e tempo de processo. Esse material apresenta boas perspectivas, sobretudo na indústria metal-mecânica, na gual a produtividade, aliada ao nível de precisão, é imprescindível na busca pela competitividade. Sendo recomendadas para trabalhar sob condições severas, tais como corte intermitente, em que dureza deve estar associada com tenacidade para evitar a quebra. Na síntese do cBN, são aplicados, basicamente, dois tipos de catalisadores: nitreto de magnésio e magnésio. Cada gual oferece diferentes possibilidades. como maiores valores de tais profundidade de corte ou menor nível de rugosidade superficial. Este artigo busca contribuir com o nível de informações referentes ao processo de síntese de nitreto cúbico de boro. principalmente com a manipulação dos parâmetros aplicados no regime de síntese. Dessa forma, espera-se agregar novas informações acerca da síntese de cBN e, consequentemente, o desenvolvimento da tecnologia, em escala laboratorial, de sua produção.

PALAVRAS-CHAVE: Síntese; Nitreto Cúbico de Boro; cBN; Magnésio.

1. INTRODUÇÃO

Com a evolução e modernização da indústria metalmecânica, tem-se observado a grande necessidade de produzir ferramentas especiais que atendam às expectativas do mercado. O progresso técnico e a efetividade da indústria metal-mecânica estão diretamente relacionados com a aplicação de novos tipos de materiais para superabrasivos e ferramentas de corte. O cBN é superado somente pelo diamante em termos de dureza, como material comercialmente aplicado na indústria. Além disso, comparado ao diamante, o cBN apresenta uma resistência elevada à temperatura. Enquanto no diamante a grafitização se inicia a partir de 900°C, o cBN, à pressão atmosférica, apresenta estabilidade até 2000°C. Paralelamente a isso, a queda da dureza do diamante com o aumento de temperatura é acentuada a partir de 500°C e em 800°C ela é inferior à do cBN na mesma temperatura. (Bertalan, 1997)

O principal uso deste material está relacionado com a usinagem sob altas velocidades de metais ferrosos de difícil usinagem, tais como aços de elevada dureza (acima de 50HRc) e ferros fundidos não maleáveis, atuando no campo em que as ferramentas diamantadas não atuam. (Skury, 2001)

As exigências crescentes de desempenho, de restrições dimensionais e de longevidade de elementos de máquinas e mecanismos levaram à aplicação de materiais de alta resistência mecânica e ao desgaste que são difíceis de tratar por usinagem comum. Até pouco tempo, a quase totalidade dos processos de acabamento superficial na indústria metal mecânica era realizada por operações de retífica. (Júnior, 2008)

Para promover a qualidade de superfície das peças produzidas pela indústria são empregadas atualmente as ferramentas abrasivas, tais como rebolos de óxidos de silício, aluminas e diamantes. Entretanto, não é racional em todos os casos a utilização desse tipo de operação, tanto em termos econômicos quanto tecnológicos, tais como: baixa produtividade, presença de mudança estrutural em camadas superficiais, geração de tensões residuais e custo elevado de usinagem. Torna-se, em alguns casos, interessante substituir essas ferramentas abrasivas por insertos feitos de materiais policristalinos a base de cBN, devido, principalmente, às características singulares alcançadas com seu uso. (Bundy, 1977)

A primeira suposição teórica sobre a possibilidade de obtenção de cristais de cBN foi feita, em 1956, por R. H. Wentorf. Essa suposição foi baseada nas semelhanças existentes entre as estruturas do nitreto hexagonal de boro (hBN) e o grafite, que é a matéria prima básica para a obtenção de cristais de diamante via altas pressões e altas temperaturas. Desse modo, em 12 de fevereiro de 1957, no centro de pesquisa da General Electric, uma equipe de cientistas norte-americanos liderada por Wentorf, realizou a síntese do cBN, aplicando sobre uma amostra de hBN parâmetros de pressão e temperatura semelhantes ao utilizado na síntese dos diamantes. (Wentorf, 1957)

É interessante notar que, nos primeiros anos, após a primeira síntese do cBN, não houve quem especificasse a aplicabilidade prática desse material. Somente nos anos 70, é que se observou que a dureza do cBN quase não é afetada pelas altas temperaturas ocasionadas por processos de corte, abrasividade e usinagem. Isso tornou o cBN um promissor material para a usinagem de materiais ferrosos, tais como aços e ferros fundidos, ou qualquer outra liga em que a usinabilidade é difícil ou onde as ferramentas de diamante não podem ser empregadas. O diamante, como é sabido, é o material comercial de dureza excepcional, contudo reage rapidamente com os materiais ferrosos sob condições normais de usinagem. (Pacheco, 2011)

Os altos índices técnico-econômicos da aplicação dos policristais de cBN, durante a usinagem de aços de alta liga e de elevada dureza e, também, de metal duro, condicionaram o elevado crescimento da produção mundial, em razão do consumo nos mais diversos ramos da indústria metalmecânica. Como exemplo, pode-se citar que a década de 90 foi marcada pela redução de custos de produção. O objetivo era reduzir os tempos do processo de fabricação. Cada segundo economizado significa um aumento da produtividade e, portanto, uma redução de custo. Dessa forma, aumentou o interesse por novas tecnologias de ferramentas de corte, que permitem maiores avanços de usinagem e com a mesma vida útil, representando uma redução no custo de produção com otimização do processo e melhoria da qualidade do produto. Neste mesmo período, observou-se um aumento de cerca de 20 vezes na produção de cBN e seus compósitos. (Will et al.,2000)

Cabe ressaltar que o Brasil não detém a tecnologia baseada nas técnicas de alta pressão que possibilitem o desenvolvimento da produção em larga escala de policristais à base de cBN. Entretanto, é importante notar que já foram realizadas as primeiras tentativas de síntese e sinterização de compósitos a partir de cBN, por pesquisadores do Laboratório de Altas Pressões do Instituto de Física da Universidade Federal do Rio Grande do Sul (UFRGS) e por pesquisadores da Universidade Estadual do Norte Fluminense - UENF/LAMAV. Porém, a presente situação comercial do Brasil nesse mercado é de completa dependência da importação de ferramentas equipadas com os insertos de cBN. (Andrade et al., 2005) Sabendo-se que grandes empresas da indústria brasileira utilizam ferramentas à base de pastilhas de cBN, com isso, constitui de interesse prático os estudos em relação à síntese e sinterização desse material, objetivando a produção de materiais superabrasivos com melhores condutividade térmica e resistência ao desgaste.

2. METODOLOGIA

2.1. Elaboração do planejamento fatorial 2³

Para a avaliação dos diferentes fatores, tais como teor de magnésio, pressão e temperatura, que influenciam tanto o processo de síntese quanto nas propriedades dos cristais obtidos, será utilizada a técnica de planejamento de experimentos. Na elaboração do planejamento inicialmente são escolhidos os fatores a serem estudados. Para estudar o efeito de qualquer fator sobre a resposta é preciso fazê-lo variar e observar o efeito desta variação. Isso implica a realização de ensaios em pelo menos dois níveis desse fator. Para o presente estudo, as seguintes variáveis foram escolhidas como fatores: Teor de magnésio (x1), Pressão (x2) e Temperatura (x3)

Tendo em vista que existem 3 fatores, significa que o planejamento será do tipo 2³ (Neto et al., 1995), totalizando 8 experimentos, onde cada fator varia em dois níveis. A listagem de todas as possíveis combinações, que são chamadas de matriz de planejamento, está apresentada na Tabela 1. Os valores codificados para os dois níveis dos três fatores estão mostrados na Tabela 2. A fixação destes valores foi realizada a partir de dados reportados na literatura por Azevedo (2000). Nas tabelas 1 e 2 encontram-se também listados os parâmetros relativos ao ponto médio, o qual é utilizado para a determinação do erro experimental.

Ensaio	X1	X2	X3				
1	+	+	+				
2	-	+	+				
3	+	-	+				
4	-	-	+				
5	+	+	-				
6	-	+	-				
7	+	-	-				
8	-	-	-				
9	0	0	0				

Tabela 1: Matriz de p	olanejamento
-----------------------	--------------

Tabela 2: Níveis dos fatores estudados							
Nível X1(%) X2 (GPa) X3							
+	30	6	1700				
-	20	4	1300				
0	25	4,5	1500				

2.2. Aplicação de Metodologia de Superfície de Resposta

Após a verificação do ajuste do modelo, através da dispersão dos pontos no gráfico dos resíduos contra as repostas previstas pelo modelo e pela determinação do erro em cada coeficiente calculada pela variância de cada efeito, utilizando o programa MODREG, obtém-se um modelo. Este, por sua vez, descreve satisfatoriamente o processo em estudo, ou seja, o processo de síntese. Com isso, foram construídas as superfícies de resposta e suas respectivas curvas de nível. Para este fim foi utilizado o software SURFER. De posse desses dados, foram determinadas as condições otimizadas para a obtenção de um processo com 100% de eficiência, ou seja, maior densificação possível.

2.3. Procedimento Experimental para Execução do Processo de Síntese

Os experimentos foram realizados na prensa hidráulica especial de 630 toneladas, modelo DO138B da Ryazantyashpressmash (Rússia), utilizando como dispositivo de alta pressão (DAP) bigornas de metal duro com concavidade de diâmetro de 13,5 mm tipo toroidal. A Figura 1 apresenta, à esquerda, a prensa hidráulica e, à direita, o dispositivo de alta pressão utilizado nas prensagens.

Figura 1: (Esquerda) prensa hidráulica, modelo DO138B. (Direita) dispositivo de alta pressão utilizado nas prensagens sendo (1 e 2) bigornas; (3) cintamento. (4) cápsula deformável. (5) mistura reativa e os (6) discos de proteção, (7) gaxeta formada.

Fonte: (Adaptado de Ramalho, 2003)

2.4. Preparação da Mistura Reativa

Os materiais utilizados durante os experimentos neste trabalho foram: i) Nitreto hexagonal de boro em pó fornecido pelo Instituto de Materiais Superduros de Kiev, Ucrânia, ii) Magnésio em pó com granulometria $\leq 53 \mu$ m, iii) Discos constituídos de 50% em peso de calcita e 50% em peso de grafite, fabricados no setor, iv) Cápsulas de calcita, v) Tubo aquecedor de grafite com diâmetro externo de 7mm e interno de 5mm e vi) Dicromato de Potássio e ácido sulfúrico.

2.5. Montagem da célula de reação

A célula de reação montada no interior da cápsula deformável é

constituída por um aquecedor cilíndrico de grafite, pela amostra e por duas tampas isolantes. O esquema de montagem pode ser observado na Figura 2. Para a montagem da célula de reação, a mistura foi manualmente compactada no interior da cápsula deformável com auxílio de um pistão e martelo.

Fonte: (Ramalho, 2003)

2.6. Caracterização

Com o objetivo de se obter detalhes morfológicos das amostras, foram realizadas avaliações por meio de análise de microscopia eletrônica de varredura (MEV). As amostras foram dispostas aleatoriamente sobre suportes apropriados e observadas sob diversos aumentos.

2.6.1. Difração de raios X

As estruturas cristalinas obtidas nas amostras, foram analisadas em pó no difratograma de raios X (XRD 7000) com radiação Cu-Kα, temperatura ambiente e com uma variação de 5 a 100° a uma velocidade de análise de 2º/min. A determinação dos parâmetros estruturais foi obtida a partir dos resultados analisados de DRX, todas as medidas foram efetuadas nas mesmas condições de operação do equipamento.

2.7. Determinação dos Parâmetros Estruturais

Com o intuito de se ter parâmetros assertivos para mensurar diferentes aspectos dos grãos formados, foram calculados o grau de transformação do hBN em cBN (GT), percentual da estrutura hexagonal perfeita (PHP), tamanho dos cristalitos ao longo dos eixos C (Lc), tamanho dos cristalitos ao longo dos eixos A (La), dimensão efetiva dos cristalitos (L), distância interplanar (d002), tensão estrutural ao longo do eixo c (ϵ c), número médio de camadas por empilhamento (Ns) e densidade (ρ). (Skury et al., 2007), (González et al., 2002), (Emmerich, 1995), (Callister, 2000), (Iwashita e Inagaki, 1993),

(Sharma et al., 2002), (Jin et al., 2000))

3. Resultados e Discussões

Na Tabela 3, são apresentados os resultados obtidos a partir das análises dos difratogramas das amostras preparadas a partir dos parâmetros pré-estabelecidos na matriz de planejamento.

As amostras 2 e 5, foram as que apresentaram maior GT, 0,36 e 0, 31 respectivamente. As amostras 9(1), 9(2) e 9(3), foram realizadas com os mesmos parâmetros com o intuito de se fazer uma análise de erro experimental. Todas as amostras tiveram 60 segundos de tempo de síntese na prensa e granulometria de 50 mesh.

Amostra	Temperatura (°C)	Pressão (Mpa)	Teor de Mg (%)	GT	PHP	Lc (nm)	La (nm)	L	d 002	SC	Ns	ρ
1		12	30	0,14	66,66	28,88	42,01	1,92	3,30	0,13	7,84	2,20
2	1700	12	20	0,36	40,70	36,44	54,37	1,84	3,31	0,10	11,02	2,20
3	1/00	7	30	0,12	76,92	31,42	43,83	1,44	3,30	0,15	9,51	2,20
4			20	0,09	85,56	29,33	44,02	1,73	3,28	0,13	8,94	2,22
5		12	30	0,31	74,26	15,71	20,93	0,90	3,27	0,46	4,80	2,22
6	1200	12	20	0,05	59,25	31,39	43,96	1,46	3,34	0,15	9,40	2,18
7	1200	7	30	0,15	75,49	24,40	33,95	2,30	3,29	0,12	7,42	2,21
8			20	0,08	95,08	22,01	31,77	1,43	3,27	0,21	6,74	2,23
9 (1)				0,04	73,58	29,99	57,75	2,48	3,28	0,09	9,14	2,21
9 (2)	1500	9	25	0,03	54,94	30,67	46,77	1,82	3,31	0,12	9,26	2,19
9 (3)				0,06	93,33	33,81	54,42	2,0 7	3,32	0,09	10,18	2,18

Tabela 3: Parâmetros estruturais obtidos a partir das análises de DRX

3.1. Análises dos parâmetros estruturais obtidos em cada amostra correlacionados aos seus respectivos DRX

3.1.1. Amostra 2

A amostra 2 foi produzida a 1700°C, 6 GPa e 60 segundos de síntese, com teor de Mg igual a 20% e DAP aquecido. Estes parâmetros lhe atribuíram o maior GT dentre todos os outros ensaios realizados neste trabalho. O valor obtido para o Ns também chama a atenção por ser o maior dentre as amostras, 11,02. Este valor está diretamente correlacionado ao alto valor obtido para o Lc=36,44, novamente o mais acentuado dentre as demais amostras. Principalmente ao se notar que a distância interplanar das amostras não obtiveram uma discrepância relevante.

Analisando o difratograma da Figura 3, nota-se que a linha base é bastante irregular além de começar com uma intensidade relevante quando comparada as demais. Percebe-se também que todos os picos estão mais intensos proporcionalmente falando, nota-se ainda que o pico de maior intensidade do hBN está com intensidade baixa em relação a todas as outras amostras. Isso pode ser atribuído aos parâmetros estabelecidos, a uma inadequada acomodação da amostra ao ser feito o DRX ou uma superfície irregular na amostra formada.

Figura 3: Difratograma da amostra 2

Outro ponto interessante é que o pico de cBN mais intenso de 43,31 possui um outro pico muito próximo de nitreto de magnésio (Mg3N2). Tendo ainda mais dois picos de considerável intensidade de cBN, com isso, pode-se afirmar que esta amostra possui grande potencial para formação de grãos de cBN.

O PHP desta amostra é de 40,7, o mais baixo dentre todas as outras. O que indica um baixo percentual de estrutura hexagonal perfeita. Isto implica numa baixa tendência de formação de cBN, embora esta amostra tenha tido um elevado GT.

3.1.2. Amostra 5

O quinto ensaio realizado, Figura 4, foi produzido com 30% de teor de magnésio na mistura, 6 GPa de pressão, 1200°C de temperatura, 60 segundos de tempo de síntese e com DAP frio.

Como resultado, há uma relativa variação na linha base de intensidade, porém com aumento considerável do número de picos quando comparado às demais amostras realizadas sob temperatura de 1700°C, ficando como amostra que apresentou a maior quantidade de picos, 34. Este aumento substancial no número de picos é identificado em todas as amostras que foram submetidas a 1200°C.

O grau de transformação do hBN em cBN neste ensaio, foi o segundo maior valor dentre todos os ensaios realizados; GT=0,311. A tendência de formação de cBN atinge valor um pouco acima da média; PHP=74,26. A tensão estrutural ao longo do eixo c, atinge seu maior valor neste ensaio; Ec=0,463; o que segundo lwashita (1993), é um dos fatores que provocam a alteração da distância interplanar.

O diboreto de magnésio aparece novamente ao lado do pico mais intenso de hBN. Tendo ainda seus três picos de maior intensidade registrados nestas amostras, o que pode maximizar os aspectos de supercondutividade.

3.2. Comportamento dos parâmetros estruturais em função da pressão para cada amostra

No gráfico da Figura 5, nota-se que para uma mesma temperatura de 1700°C, a dimensão dos cristalitos (L) tende a ser maior sob pressão de 12 MPa (6GPa).

Capítulo 4

Figura 5: Variação dos parâmetros estruturais em função da pressão aplicada a 1700°C para a amostra 4,3,2, e 1

Figura 6: Variação dos parâmetros estruturais em função da pressão aplicada a 1200°C para as amostras 8, 7, 6 e 5

No entanto no gráfico da Figura 6, pode se analisar que sob uma mesma temperatura de 1200°C há uma tendência de maiores dimensões efetiva dos cristalitos (L) sob pressão de 7 MPa (3,5 GPa).

Já no gráfico da Figura 7, pode-se visualizar que sob temperatura de 1700°C existe uma maior tendência de formação de grãos de cBN (PHP) e de maior tensão estrutural ao longo do eixo *c* sob pressão de 7MPa (4 GPa).

Capítulo 4

Figura 7: Variação do PHP; tensão estrutural em função da pressão a 1700°C para as amostras 4, 3, 2 e 1

Figura 8: Variação do PHP; tensão estrutural em função da pressão sob a 1200°C para as amostras 8, 7, 6, e 5

Nota-se ainda que há uma grande tendência a formação de grão de cBN (PHP) à pressão de 7MPa (4 GPa) com baixa tensão estrutural ao longo do eixo c (Ec), principalmente na amostra 7. Conforme observado no gráfico da Figura 8.

No gráfico da Figura 9, fica claro, proporcionalmente falando, o maior grau de transformação das amostras 2 e 5. Sendo ambas submetidas a 6 GPa.

Figura 9: Grau de transformação das amostras em função da pressão e temperatura das amostras 1 a 8.

Figura 10: Grau de transformação em função da Pressão, temperatura e teor de Mg das amostras 1 a 8

A Figura 10 ilustra o Grau de transformação de hBN em cBN em função dos parâmetros pré-estabelecidos de pressão, temperatura e teor de magnésio das amostras, conforme a matriz de planejamento.

3.3. Alterações morfológicas ocasionadas pela variação dos parâmetros estruturais

Na Figura 11, são apresentadas as imagens obtidas por MEV para os aglomerados após tratamento termobárico das amostras 2 e 5.

Figura 11: Micrografia da amostra 2 (esquerda); Micrografia da amostra 5 (direita)

Há uma considerável variação de suas respectivas morfologias e dimensões dos cristais formados, evidenciando a influência das variações de pressão, temperatura e teor de magnésio ao qual cada uma das amostras foi produzida.

A Figura 11(esquerda) mostra ainda que os cristais obtidos sob pressão de 6 GPa, 1700°C e com 30 e 20% de magnésio respectivamente, apresentaram morfologia e dimensão distintas. O que revela a influência do teor de Mg nesses aspectos citados. Já na micrografia da amostra 5, Figura 11(direita), produzida sob pressão de 4,5 GPa; 25% de Mg e temperatura de 1500°C; nota-se que a morfologia de estrutura fibrosa se faz presente. Essa tendência do arredondamento dos cristais pode estar relacionada a não conversão do hBN em cBN.

Nas demais amostras, foi observado que todas apresentam tendência ao arredondamento dos cristais formados, com exceção da amostra 5, que apresenta morfologia de estrutura fibrosa. O que justifica que sob altas temperaturas e pressão o Mg reage de diferentes formas com o hBN.

4. CONCLUSÃO

A partir destes ensaios e análise realizadas, pode- se notar o aparecimento de grãos de cBN em todos os ensaios realizados. Viu-se também que analisando os parâmetros estruturais obtidos, sobretudo os das amostras que obtiveram maior grau de transformação notam-se que em ambas a pressão foi de 12 MPa (6 GPa). Contudo, houve uma variação em função da temperatura e teor de magnésio.

O grau de transformação do hBN em cBN da amostra 5 fica próximo ao da amostra 2 mesmo trabalhando com menos 500°C, isso pode ser justificado pela maior tendência de formação de cBN (PHP) apresentado na amostra 5.

Porém, ao se analisar o PHP das demais amostras, nota-se que um

elevado valor de PHP não necessariamente irá se converter em grãos de cBN efetivamente. Como exemplo temos a amostra 8, onde o valor de PHP= 95,08; e GT=0,08 mesmo com o valor da dimensão efetiva dos cristalitos elevado, L= 1,43. Nesta amostra pode-se concluir que a baixa pressão associada a uma baixa temperatura não foi suficiente para converter a alta tendência de formação de grãos de cBN (PHP) em grãos efetivos (GT).

REFERÊNCIAS

Andrade, G.R.; Ramalho, A.M.; Bobrovnitchii, G.S. Sinterização do nitreto cúbico de boro. In: 60º Congresso da ABM, Belo Horizonte, 25-28 jul. 2005.

Azevedo, M. G. (2000) Sinterização de pó de diamante em condições de alta pressão e alta temperatura para aplicação em ferramentas de corte. Dissertação (Mestrado) - Curso de Engenharia e Ciência dos Materiais, Universidade Estadual do Norte Fluminense - UENF, Campos dos Goytacazes/RJ.

Barros Neto, B., Scarminio, I. S. and Bruns, R. E., "Planejamento e Otimização de Experimentos", Editora Unicamp, Campinas, SP, 278p.,1995.

Bertalan, C. Retificação com rebolos de nitreto de boro cúbico em máquinasferramentas convencionais. Florianópolis, 1997. 209 f. Dissertação (Mestrado em Engenharia Mecânica), Pós-graduação em Engenharia Mecânica, UFSC

Bundy F. P., (1977) Synthesis of Diamond and Superhard Materials. In: Ian L. Spain an Pac Paauwe, High Pressure Technology – Applications and Processes, Marcel Dekker, USA, Vol. 2, pp. 321 – 337.

Callister, W. D. Engenharia e Ciência dos Materiais: uma introdução. 5. ed. Livros Técnicos e Científicos, 2002. 589 p.49

Emmerich, F. G. Evolution with heat treatment of crystallinity in carbons. Carbon, v. 33, n. 12, p. 1709-1715, jan. 1995.

González, D. et al. Effect of temperature on the graphitization process of a semianthracite. Fuel Processing Technology, v. 79, n. 3, p. 245-250, dez. 2002

Guimarães, L. M. Estudo Do Processo Síntese Do Nitreto Cúbico De Boro – Cbn Utilizando Mg Como Catalisador. Dissertação de Mestrado em Ciências e Engenharia de Materiais-Campos dos Goytacazes - RJ: Universidade Estadual do Norte Fluminense - UENF, 2013.

Iwashita, N.; Inagaki, M. Relations between structural parameters obtained by X-Ray powder diffraction of various carbon materials. Carbon, v. 31, p. 1107-1113, jan. 1993.

Jin, W. et al. Fabrication of La0.2Sr0.8Co0.8Fe0.2O3 $-\delta$ mesoporous membranes on porous supports from polymeric precursors. Journal of Membrane Science, v. 170, n. 1, p. 9-17, 15 maio 2000.

Júnior, J. S., Ramalho, A. M., Bobrovnitchii, G. S. (2008). Transformação do nitreto hexagonal de boro em nitreto cúbico de boro com o catalisador magnésio. Revista Matéria, v.13, n. 2, p. 258-266.

Pacheco, J. L., (2011) Material didático de disciplinas do Departamento de Engenharia Mecânica da UFRGS

Ramalho, A.M. Elaboração da metodologia e tecnologia de seleção de materiais e fabricação das cápsulas deformáveis utilizadas nos processos de síntese / sinterização dos materiais superduros. 2003. 233 p. Tese de Doutorado, UENF. Campos dos Goytacazes.

Sharma, N. et al. Sol-gel derived nano-crystalline CaSnO3 as high-capacity anode material for. Li-íon batteries. Electrochemistry Communications, v4, p. 947-952, 2002.

Skury, A. L. D. Estudo dos parâmetros do processo de formação dos diamantes e elaboração de procedimento experimental para sua produção a partir de grafites. Tese de Doutorado em Engenharia e Ciência dos Materiais, Campos dos Goytacazes, 2001 – RJ

Skury, A. L. D.; Ramalho, AM; Bobrovnitchii, GS. Processo de sinterização de materiais policristalinos e compósitos à base de materiais duros e superduros. 2007. PI0701534-8,

Wentorf R. H.-Cubic form of boron nitride. Journal of Chemistry Physics, 1957, v26, n4, p956-959.

Will G.; Nover G.; Von der Gonna J. New experimental results on the phase diagram of boron nitride. Journal of Solid-State Chemistry, 2000, v. 154, p. 280 -285.

APPLICATION OF RESPONSE SURFACE METHODOLOGY TO STUDY THE SYNTHESIS PROCESS OF CUBIC BORON NITRIDE - cBN USING Mg AS CATALYST

ABSTRACT - The cubic boron nitride (cBN) is a material essential for machining with high precision and high-speed ferrous materials such as steel, because, unlike diamond, cBN does not respond to iron under certain temperature, maintaining their physical and chemical stability during the cutting and machining. This translates into the ability to maintain sharp cutting-edge mechanization and constant dimensions (cutting, machining, and polishing) of the principal material used in the industry, which is steel. Furthermore, the use of inserts based cBN as machining tool can eliminate the need for grinding parts, saving machines, skilled manpower, and process time. This material has good prospects, particularly in the metalworking industry, where productivity, coupled with the level of precision, it is essential in the quest for competitiveness. In the synthesis of cBN are commonly applied two types of catalysts: magnesium nitride, and magnesium. Each offers different possibilities such as higher values of depth of cut or lower level of surface roughness. This paper intends to raise the level of information regarding the process of synthesis of cubic boron nitride,

especially with the manipulation of the parameters used in the scheme of synthesis. Thus, it is expected new information about the cBN synthesis and, consequently, the development of technology of its production.

KEYWORDS: Synthesis; Cubic Boron Nitride (cBN); Magnesium.

CAPÍTULO 5

APLICAÇÃO DE SEPARAÇÃO MAGNÉTICA DE ALTA INTENSIDADE (WHIMS) NO BENEFICIAMENTO DE ITABIRITOS POBRES

João Paulo Melo Silva lattes.cnpg.br/4595263082798840

Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais

Antônio Eduardo Clark Peres

lattes.cnpq.br/8666548473150908

Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais

RESUMO - Atualmente, nas usinas de beneficiamento de itabiritos pobres (%Fe≈45,0) a flotação reversa de quartzo é a etapa de concentração aplicada. mais comumente Na maioria das vezes os circuitos de flotação são precedidos por circuitos de classificação em hidrociclones que têm como objetivo retirar do processo partículas ultrafinas. No entanto. esta rota de processo enfrentar problemas começa а para manter os mesmos níveis de recuperação metálica e de qualidade de concentrado quando o teor de Fe na alimentação das plantas é menor que 40,0%. Foram realizados testes avaliando a aplicação de separação magnética de alta intensidade no beneficiamento de itabiritos pobres. Na rota de processo avaliada (separação magnética + flotação), a etapa de separação magnética executa a função de préconcentração e deslamagem. O teor de SiO_2 no concentrado foi de 1,46% (menor que o teor objetivo de 2,00%). As recuperações mássica e metalúrgica obtidas com a rota separação magnética + flotação foram maiores em termos absolutos 3,3% e 4,4%, respectivamente.

PALAVRAS-CHAVE: Minério de ferro; Concentração; Flotação; Separação magnética.

1. INTRODUÇÃO

Os teores de Fe nos minérios economicamente aproveitados no Brasil, principalmente no estado de Minas Gerais, têm caído de forma significativa nos últimos anos. Na figura 1 é possível observar essa redução, a partir dos teores de Fe da produção bruta de ROM registrados no Brasil e no estado de Minas Gerais no período de 2001 a 2020. A partir do ano de 2013 a queda no teor de Fe da produção bruta de minério de ferro no Estado de Minas Gerais ocorre de forma mais acentuada quando comparado com os valores
observados para o Brasil. Os dados foram obtidos no Anuário Mineral Brasileiro no sítio da Agência Nacional de Mineração.

Figura 1: Teor de Fe na produção bruta de minério de ferro no Brasil e no Estado de Minas Gerais de 2001 a 2020

Fonte: Anuário Mineral Brasileiro / Agência Nacional de Mineração

2013

2015

2017

2019

2011

45 L 2001

2003

2005

2007

2009

Atualmente, nas usinas de beneficiamento de itabiritos pobres (%Fe≈45,0) a flotação reversa de quartzo é a etapa de concentração mais comumente aplicada. Na maioria das vezes os circuitos de flotação são precedidos de circuitos de moagem que têm como objetivo liberar o quartzo e circuitos de classificação em hidrociclones (deslamagem) que têm como objetivo retirar do processo partículas ultrafinas. No entanto, esta rota de processo (deslamagem + flotação) começa a enfrentar problemas para manter os mesmos níveis de recuperação metálica e de qualidade de concentrado quando o teor de Fe na alimentação das plantas é menor que 40,0%.

Uma alternativa para manter os resultados dessas usinas seria a utilização de circuitos nos quais a etapa de concentração é realizada em dois estágios: um estágio de pré-concentração e um estágio de concentração. Com a inclusão do estágio de pré-concentração a rota de processo mais comumente utilizada (pré-concentração + deslamagem + concentração) aumentaria os custos operacionais das plantas e tornaria os fluxos de processo mais complexos. A utilização de um estágio de pré-concentração que eliminasse a necessidade da etapa de deslamagem mitigaria esses problemas (SILVA *et al*, 2017).

A separação magnética de alta intensidade é um processo com potencial para aplicação na pré-concentração de itabiritos pobres. Segundo OBERTEUFFER e WECHSLER (1980), com a redução dos depósitos de elevado teor de ferro a aplicação de separadores magnéticos de alta intensidade é uma alternativa para o processamento desses materiais.

Aimportância prática da separação magnética foi reconhecida somente

no final do século 19. Nessa época, vários pesquisadores demonstraram a viabilidade de separar partículas fortemente magnéticas de partículas de ganga não magnética. A partir do final do século 19, muitos separadores magnéticos permitiam a separação de partículas fortemente magnéticas de partículas menos magnéticas. No entanto, apenas recentemente, com o aumento considerável do entendimento dos fundamentos do magnéticos, foi possível aplicar a separação magnética a uma ampla gama de materiais no que se refere à faixa granulométrica e à susceptibilidade magnética (SVOBODA e FUJITA, 2003).

NESSET e FINCH (1980) afirmaram que a determinação da susceptibilidade magnética dos minerais é essencial para a definição do potencial de aplicação da separação magnética, uma vez que a aplicação desta etapa unitária no processamento de minérios requer uma diferença significativa da susceptibilidade magnética entre os minerais que serão separados.

A origem das propriedades magnéticas dos minerais resulta de propriedades atômicas que são específicas para um grupo de elementos. Os minerais classificados como diamagnéticos são formados por átomos com configuração eletrônica similar à configuração eletrônica dos gases nobres, com elétrons emparelhados no orbital d. Os minerais classificados como paramagnéticos apresentam átomos com configuração eletrônica característica dos elementos de transição como Fe, Mn, Ti e Cr, que apresentam elétrons desemparelhados no orbital d (KLEIN e DUTROW, 2007b).

A propriedade física denominada susceptibilidade magnética é a expressão externa das características internas dos átomos que constituem os minerais e por sua vez explica o comportamento dos minerais quando esses são submetidos à ação de um campo magnético externo. Segundo BLUM (1997), a susceptibilidade magnética é o nível ou grau que um determinado material ou mineral pode ser magnetizado quando submetido a um campo magnético externo. A susceptibilidade específica ou mássica de um determinado material pode ser expressa conforme a equação 1.1.

$$X = \frac{k}{\rho} \tag{1.1}$$

Onde k é a susceptibilidade volumétrica (adimensional), ρ é a densidade do material e X é a susceptibilidade magnética específica ou mássica do material ou mineral (m³/kg).

NESSET e FINCH (1980) utilizaram o separador isodinâmico Frantz para determinar a susceptibilidade magnética específica de minerais de Fe. Neste equipamento a separação ocorre em uma bandeja posicionada entre dois polos magnéticos que mantêm a intensidade do campo magnético constante ao longo do comprimento da bandeja. Com o objetivo de avaliar a aplicação de separadores magnéticos de alta intensidade para o beneficiamento de itabiritos pobres, foram comparados os resultados obtidos em ensaios tecnológicos que simulam a rota de processo de referência caracterizada pelas etapas de deslamagem e flotação com os resultados obtidos com a rota de processo alternativa caracterizada pelas etapas de separação magnética e flotação. Na rota alternativa, a etapa de separação magnética executa a função de pré-concentração e deslamagem.

2. METODOLOGIA

A metodologia utilizada neste estudo incluiu duas etapas. A primeira etapa se refere à caracterização da amostra e a segunda etapa correspondeu à execução dos ensaios tecnológicos que simularam a rotas de processo de referência e rota de processo alternativa. A amostra utilizada no estudo foi coletada no Quadrilátero Ferrífero, no Estado de Minas Gerais.

Na etapa de caracterização da amostra foram realizadas análises químicas, mineralógicas e determinada a distribuição granulométrica. Também foi determinada a susceptibilidade magnética por faixa de tamanhos.

A análise granulométrica foi realizada utilizando peneiras da série Tyler com as aberturas variando de 9.525µm a 37µm. As análises mineralógicas e do grau de liberação foram realizadas em um microscópio óptico marca Leica e o grau de liberação do quartzo foi determinado pelo método de Gaudin. As seções polidas foram confeccionadas com embutimento dos minerais em resina de cura rápida, a frio. Após a cura as seções foram lixadas e polidas com pasta de alumina.

A determinação da susceptibilidade magnética de cada uma das frações foi realizada em um Separador Magnético Isodinâmico Frantz segundo o método apresentado por NESSET e FINCH (1980). O método consiste em realizar medidas de separação magnética para diferentes ângulos de inclinação da bandeja. Para cada um dos ângulos empregados foram realizadas medidas para diferentes valores de corrente aplicada nas bobinas. Os ângulos nos quais foram realizados os testes de separação magnética foram de 5°, 10°, 15°, 20°, 25°, 30° e 35°. A corrente aplicada nas bobinas variou de 0,05A a 0,80A.

Na etapa de testes tecnológicos foram realizados ensaios de moagem, flotação, deslamagem e remoagem em escala de bancada. A etapa de separação magnética foi realizada em escala de bancada e escala piloto. Os testes de moagem foram realizados em moinhos de 0,2032m X 0,3048m, com velocidade de rotação igual a 71% da velocidade crítica e percentual de enchimento de 25%. Os testes de remoagem foram realizados em moinhos de 0,2540m X 0,2540m, com velocidade de rotação igual a 65% da velocidade crítica e percentual de enchimento de 30%.

Os testes de deslamagem foram realizados em cuba de 4.000mL. A massa de sólido empregada no teste é de 1.700g. O dispersante utilizado foi

o hidróxido de sódio (3%p/v) e o pH de dispersão empregado foi igual a 10,5. Os testes de flotação em bancada foram realizados em uma célula de flotação WEMCO de 2.400mL, com rotação de 1.300rpm. O depressor dos minerais de ferro utilizado foi o amido de milho (fubá) gelatinizado com hidróxido de sódio, na proporção mássica 5:1. O coletor empregado nos testes foi uma eteramina.

Os testes de separação magnética em escala de bancada foram realizados no aparelho L-4, fabricado pela Inbras-Eriez. Os testes em escala de bancada foram realizados utilizando pacotes magnéticos com abertura de 1,5mm, 2,5mm, 3,8mm e 5,0mm. Todos os testes foram realizados empregando um percentual de sólidos de 30,0% (p/p). A massa empregada nos testes foi de 50,0g.

Os testes de separação magnética em escala piloto foram realizados no equipamento Minimag, de propriedade da Gaustec. O equipamento trabalha com uma taxa de 288kg/h (base seca). No estágio rougher, os parâmetros de processo foram: matriz de 5,00 mm, intensidade do campo magnético de 0,80 T, velocidade de rotação do rotor de 4,50 rpm, pressão da água de limpeza do fluxo de médio igual a 2,5 kgf/cm², pressão da água de limpeza do fluxo de concentrado igual a 4,0 kgf/cm². No estágio scavenger, os parâmetros de processo foram: matriz de 1,50 mm, intensidade do campo magnético de 1,2 T, velocidade de rotação do rotor de 5,00 rpm, pressão da água de limpeza do fluxo de médio igual a 3,5 kgf/cm², pressão da água de limpeza do fluxo de médio igual a 4,0 kgf/cm².

3. RESULTADOS

3.1. Caracterização da amostra

A tabela 1 apresenta o resultado da análise química utilizada no teste. O resultado da análise química mostra um teor de Fe, 44,72% e um teor de SiO₂ de 32,56%.

 Tabela 1: Resultado da análise química quantitativa total para a amostra de minério utilizada nos testes

%Fe	%SiO ₂	%Al ₂ O ₃	%P	%PPC	%MnO₂
44,72	32,56	0,55	0,034	2,53	0,05

A figura 2 apresenta os resultados da análise do teor de Fe por faixa de tamanho e o cálculo do teor de Fe acumulado. Os resultados mostram que o teor de Fe é menor na faixa de tamanho entre 210 μ m e 53 μ m. Para as faixas maiores que 210 μ m e menores que 53 μ m o teor de Fe é maior que 42,27%. O menor teor de Fe, 21,21%, foi obtido com partículas menores que

Capítulo 5

149µm e maiores que 105µm.

A tabela 2 apresenta o resultado da análise mineralógica da amostra. Os valores estão indicados em percentual (p/p). Os resultados mostram pequenos teores de magnetita, apenas 2,25% e quantidades significativas de goethita e hematita porosa, respectivamente, 22,82% e 17,44%. A figura 3 apresenta a fotomicrografia da seção polida utilizada na análise.

Tabela 2: Resultado da análise mineralógica para a amostra de minério utilizada nos testes

Hematita Especular	Hematita Porosa	Goethita	Magnetita	Quartzo Livre	Quartzo Misto	Outros
26,27	17,44	22,82	2,25	24,82	4,61	1,79

Figura 3: Fotomicrografia da seção polida utilizada na análise mineralógica da amostra de minério futuro (HE - hematita especular; HP - hematita porosa; GO – goethita; MA – magnetita e QZ –quartzo)

A susceptibilidade magnética por faixa foi determinada a partir de medidas de recuperação em peso considerando três ângulos de inclinação da bandeja do separador magnético Frantz. Para as frações -37µm e +37-44µm os ângulos de inclinação empregados nos testes foram 10°, 20° e 30°. Para as frações +44-53µm, +53-74µm, +74-105µm, +105-149µm e +149-210µm os ângulos empregados nos testes foram 5°, 15° e 25°. Para cada ângulo de inclinação da bandeja as recuperações foram medidas variando a corrente aplicada nas bobinas do equipamento de 0,05A a 0,80A. O aumento na intensidade da corrente foi realizado a partir de incrementos constantes de aproximadamente 0,10A.

Na figura 4 estão apresentados os valores do I_{50} calculado para os três ângulos de inclinação da bandeja para as frações granulométricas -37µm, +37-44µm, +44-53µm, +53-74µm, +74-105µm, +105-149µm e +149-210µm. Os valores de I_{50} estão plotados em função do seno do ângulo de inclinação da bandeja. Os resultados mostram a relação dos valores de I_{50} com a granulometria. Para as frações mais finas, o valor de I_{50} calculado é menor do que o valor de I_{50} calculado para as frações mais grosseiras. Para um ângulo de inclinação da bandeja de 15°, o I_{50} calculado para a fração +44-53µm foi de 0,316A enquanto o valor de I_{50} calculado para a fração +149-210µm foi de 0,769A. Considerando as frações granulométricas que tiveram sua susceptibilidade magnética avaliada, as frações granulométricas mais grosseiras, além de terem maior peso, também apresentam menor teor de ferro e por isso para essas partículas serem coletadas na fração magnética é necessária a aplicação de campos magnéticos de maior intensidade.

Figura 4: Valores do I50 calculado para os três ângulos considerados para as frações granulométricas -37μm, +37-44μm, +44-53μm, +53-74μm, +74-105μm, +105-149μm e +149-210μm

A tabela 3 apresenta os resultados obtidos para a susceptibilidade magnética específica (X) para as frações granulométricas -37µm, +37-44µm, +44-53µm, +53-74µm, +74-105µm, +105-149µm e +149-210µm. Na

tabela também estão apresentadas as variáveis de corrente (I_{50}) e ângulo de inclinação da bandeja (θ). Da mesma forma que ocorreu com a determinação do I_{50} , os valores encontrados para a susceptibilidade magnética são menores para as frações magnéticas mais grosseiras. A susceptibilidade magnética foi calculada de acordo com a equação 3.1, apresentada por HESS (1966).

$$X = \frac{20 \times \sin \theta}{{I_{50}}^2} \times 10^{-6}$$
(3.1)

Tabela 3: Resultados obtidos para a susceptibilidade magnética para as frações granulométricas -37μm, +37-44μm, +44-53μm, +53-74μm, +74-105μm, +105-149μm e +149-210μm

Fração	-37µm	+37-44µm	+44-53µm	+53-74µm	+74-105µm	+105-149µm	+149-210µm
I ₅₀ (A)	0,177	0,327	0,316	0,383	0,538	0,693	0,769
θ (°)	20	20	15	15	15	15	15
X (cm³/g)	2,2E-05	6,4E-06	5,2E-06	3,5E-06	1,8E-06	1,1E-06	8,7E-07

3.2. Testes Tecnológicos

Testes de separação magnética em escala de bancada foram realizados com o objetivo de verificar o comportamento dos contaminantes Al_2O_3 e P na etapa de separação magnética. Esses dois elementos considerados nesta análise são os principais contaminantes associados à amostra testada e têm impacto negativo na etapa de flotação no caso do óxido de alumínio (Al_2O_3) e no caso do fósforo (P) nos processos siderúrgicos.

De acordo com os resultados apresentados na figura 4, quanto maior a intensidade do campo magnético aplicado maior é o teor de AI_2O_3 na fração magnética e menor o teor na fração não magnética. Para uma mesma intensidade de campo magnético aplicado, o teor de AI_2O_3 é sempre maior na fração não magnética e sempre menor na fração magnética quando os valores são comparados com o teor de AI_2O_3 na alimentação do teste (0,550%). Isso é um indício da não associação do óxido de alumínio (AI_2O_3) a minerais que têm Fe na estrutura.

Figura 4: Teor de Al2O3 na fração magnética e na fração não magnética obtidas nos testes em escala de bancada variando a intensidade do campo magnético de 6.000G a 12.000G para os pacotes magnéticos com abertura de 1.5mm. 2.5mm. 3.8mm e 5.0mm

De acordo com os resultados apresentados na figura 5, quanto maior a intensidade do campo magnético aplicado maior é o teor de P na fração magnética e menor o teor de P na fração não magnética. Para uma mesma intensidade de campo magnético aplicado, o teor de P é sempre maior na fração magnética e sempre menor na fração não magnética, quando os valores são comparados com o teor de P na alimentação do teste (0,034% de P). Isso é um indício da associação do fósforo com minerais que têm Fe na estrutura.

Figura 5: Teor de P na fração magnética e na fração não magnética obtido nos testes em escala de bancada variando a intensidade do campo magnético de 6.000G a 12.000G para os pacotes magnéticos com abertura de 1,5mm, 2,5mm, 3,8mm e 5,0mm

A identificação e quantificação das fases mineralógicas presentes nas amostras geradas nos testes em escala piloto foi realizada tanto por análise mineralógica quanto por difração de raios X. Os resultados da análise mineralógica nas amostras geradas nos testes em escala piloto estão apresentados na tabela 4. Os resultados apresentados se referem ao percentual em massa de cada uma das fases. De acordo com os resultados, tanto na etapa rougher quanto na etapa scavenger, a hematita especular e porosa se concentram na fração magnética enquanto a goethita se concentra na fração magnética apenas na etapa scavenger. Isso se deve ao fato da goethita apresentar menor susceptibilidade magnética que a hematita (especular e porosa) e na etapa scavenger a intensidade do campo magnético aplicado é maior que na etapa rougher. Além disso, toda a magnetita presente na alimentação é direcionada para a fração magnética na etapa rougher.

Amostra	Hematita Especular	Hematita Porosa	Goethita	Magnetita	Quartzo Livre	Quartzo Misto	Outros
Alim. Rougher	26,27	17,44	22,82	2,25	24,82	4,61	1,79
Conc. Rougher	29,28	34,45	18,29	6,79	4,05	6,75	0,39
Rej. Rougher	13,27	11,01	31,20	0,00	39,73	4,79	0,00
Méd. Rougher	12,46	20,49	18,64	0,00	46,04	2,37	0,00
Alim. Scavenger	17,31	15,12	26,30	0,13	29,68	11,46	0,00
Conc. Scavenger	29,05	21,96	25,28	0,00	16,02	7,38	0,31
Rej. Scavenger	3,15	3,15	12,32	0,00	75,33	6,04	0,00
Méd. Scavenger	1,34	4,36	6,96	0,00	83,45	3,89	0,00

Tabela 4: Resultados da análise mineralógica nas amostras geradas nos testes de separação magnética em escala piloto

Os resultados da difratometria de raios X estão apresentados na tabela 5. Os resultados apresentados se referem ao percentual em massa de cada uma das fases identificadas. O indicador estatístico da qualidade do ajuste (X²) com valores iguais ou abaixo de 3,0 está dentro da faixa de valores aceitáveis. O fator estatístico que se refere à qualidade do refinamento de estrutura cristalina (Rwp) apresentou valores baixos mostrando um refinamento de boa qualidade.

Tabela 5: Resultados da difratometria de raios X nas amostras geradas nostestes de separação magnética em escala piloto

Amostra	Fases Identificadas	Goethita	Hematita	Quartzo	wrp	X ²
Alim. Rougher	quartzo, hematita, goethita	23	34	43	0,357	1,564
Conc. Rougher	hematita, goethita, quartzo	5,8	71,1	23,1	0,377	1,576
Rej. Rougher	quartzo, hematita, goethita	17,1	21	61,9	0,388	2,08
Méd. Rougher	quartzo, hematita, goethita	3,8	4,1	92,1	0,389	2,645

Alim. Scavenger	quartzo, hematita, goethita	28,3	31	40,7	0,388	2,091
Conc. Scavenger	quartzo, hematita, goethita	9,3	14	76,7	0,406	2,385
Rej. Scavenger	quartzo, hematita, goethita	17,1	10,8	72,1	0,335	2,016
Méd. Scavenger	quartzo, hematita, goethita	13,3	10,3	76,4	0,357	2,413

Com as amostras geradas nos testes em escala piloto foram realizadas análises de microscopia eletrônica de varredura (MEV). As microanálises realizadas utilizaram o espectrômetro dispersivo em energia de raios X (EDS). A figura 6 apresenta a imagem gerada no MEV com elétrons retroespalhados de uma partícula da alimentação da etapa rougher. A imagem ilustra uma partícula mista com os cristais apresentando dimensão menor que 200µm. É uma partícula com granulometria de liberação menor que 200µm. Foram destacadas quatro áreas na partícula identificadas com os números 1, 2, 3 e 4. Inicialmente as áreas identificadas com os números 1, 2 e 3 se referem a três fases minerais distintas enquanto a área identificada com o número 4 é uma área de borda da partícula caracterizada pela concentração de microcristais.

Figura 6: Imagem gerada no MEV com elétrons retroespalhados de uma partícula da alimentação da etapa rougher

Os resultados da microanálise EDS para as quatro áreas destacadas na figura 3.6 estão apresentados na tabela 6. Os resultados apresentados se referem ao percentual em peso dos elementos identificados na microestrutura. A composição química da área 1 se refere à composição de um óxido de ferro (hematita) enquanto a composição da área 3 se refere à composição de um óxido de silício (quartzo) com traços de ferro. Como pode ser observado na figura 6, estes traços estão associados a incrustações de óxidos de ferro na microestrutura. A composição química da área 2 se refere à composição de um óxido de ferro na microestrutura. A composição química da área 2 se refere à composição de um óxido de ferro com traços de silício. Estes traços de silício podem estar associados a microcristais de quartzo associados a cristais de hematita. A composição da área 4 é característica de aluminossilicatos.

Área	0	Si	Fe	AI	Total				
1	17,45	0,00	82,55	0,00	100				
2	26,56	1,96	71,48	0,00	100				
3	40,24	58,22	1,54	0,00	100				
4	24,06	4,55	67,41	3,98	100				

Tabela 6: Resultados da microanálise EDS para as quatro áreas destacadasna figura 6

A figura 7 apresenta a imagem gerada no MEV com elétrons retroespalhados de duas partículas do concentrado da etapa rougher. As partículas que aparecem na figura são partículas mistas, sendo que a partícula da esquerda é uma partícula de hematita com inclusões de cristais de quartzo enquanto a partícula da direita é formada por microcristais de quartzo e hematita. Esta partícula apresenta granulometria de liberação menor que 300µm.

A figuras 8 apresenta imagem gerada no MEV com elétrons retroespalhados de uma partícula do rejeito da etapa rougher. É uma partícula de óxido de ferro apresentado poros. Os resultados da microanálise EDS para as duas áreas destacadas na figura 3.8 indicam que a composição química da área 2 se refere à composição de um óxido de ferro (hematita) enquanto a composição da área 1 se refere à composição de um óxido de ferro (hematita) com traços de silício. Estes traços de silício podem estar associados a microcristais de quartzo associados a cristais de hematita.

Figura 8: Imagem gerada no MEV com elétrons retroespalhados de uma partícula do rejeito da etapa rougher

As rotas de processo consideradas nos testes tecnológicos são caracterizadas por 5 etapas de acordo com a figura 9. As etapas de moagem, flotação rougher, remoagem e flotação cleaner são comuns as duas rotas. A etapa de deslamagem está presente apenas na rota de referência enquanto a etapa de separação magnética está presente apenas na rota alternativa. Na figura estão representados os teores de Fe na alimentação e recuperação em massa para as etapas de deslamagem e separação magnética, teores de ferro no rejeito e recuperação em massa para a etapa de flotação rougher, a energia específica para a moagem e remoagem. Também estão apresentados o grau de liberação do quartzo (GL_q) no underflow da deslamagem e no préconcentrado da separação magnética além dos teores de SiO₂ na alimentação da flotação e no concentrado da flotação cleaner.

Para a rota de referência, foram obtidas recuperações globais mássica e metalúrgica de 50,3% e 71,2%, respectivamente. Para a rota alternativa, foram obtidas recuperações globais mássica e metalúrgica de 53,6% e 75,7%. Com isso, as recuperações mássica e metalúrgica obtidas com a rota alternativa (separação magnética + flotação) foram em termos absolutos 3,3% e 4,4% maiores que as respectivas recuperações obtidas com a rota de referência (deslamagem + flotação). O teor de SiO₂ foi de 1,46% na rota alternativa e 2,29% na rota de referência.

Além disso, o teor de SiO₂ na alimentação da etapa de flotação rougher obtido na rota de referência foi de 34,62% enquanto para a rota alternativa esse valor foi de 17,02%. Com relação ao grau de liberação do quartzo (GL_Q), o valor obtido na rota de referência foi de 78% enquanto o valor obtido na rota alternativa foi de 68,0%.

A energia específica na etapa de remoagem não apresentou diferença significativa entre as duas rotas testadas.

As duas rotas de processo podem ser comparadas de acordo com os resultados de teor de Fe no rejeito e teor de SiO₂ no concentrado conforme apresentado no gráfico da figura 10. A linha pontilhada representa o teor de SiO₂ alvo para as duas rotas (SiO₂ = 2,0%). A linha contínua representa o teor de SiO₂ na alimentação da moagem (SiO₂ = 32,56%). O maior teor de Fe no rejeito da etapa de flotação rougher na rota alternativa é explicado pelo fato do underflow da etapa de deslamagem (top size de 480µm, d₈₀ = 105µm) ser mais grosseiro que a fração magnética da etapa de pré-concentração magnética (top size de 297µm, d₈₀ = 74µm). A distribuição granulométrica do underflow da deslamagem e do pré-concentrado magnético pode ser observada na figura 11. No entanto, a qualidade do concentrado final não

é afetada por esta diferença na granulometria devido a etapa de remoagem antes da etapa de flotação cleaner.

Figura 10: Resultados de teor de SiO, no concentrado e teor de Fe no rejeito para as etapas que constituem cada uma das rotas

Figura 11: Resultados da análise granulométrica para o underflow e para a fração magnética obtido na etapa de pré-concentração magnética

A maior capacidade da rota alternativa de produzir concentrados que atendam o teor de SiO₂ objetivo (2,0%) pode ser evidenciada no gráfico da figura 12. No gráfico estão apresentados os valores do teor de SiO, no concentrado e a recuperação metálica para cada uma das etapas que constituem as duas rotas de processo. Como pode ser observado, a maior inclinação da reta associada à rota alternativa implica em uma maior capacidade de produzir concentrados com menor teor de SiO₂ a partir de ROM com maiores teores de SiO₂.

4. CONCLUSÃO

A susceptibilidade magnética varia com a tamanho das partículas e é maior para as partículas menores.

A energia específica na etapa de remoagem não apresentou diferença significativa entre as duas rotas testadas.

Para uma mesma intensidade de campo magnético aplicado, o teor de Al_2O_3 é sempre maior na fração não magnética e sempre menor na fração magnética quando os valores são comparados com o teor de Al_2O_3 na alimentação. Isso é um indício da não associação do óxido de alumínio (Al_2O_3) a minerais que têm Fe na estrutura.

Para uma mesma intensidade de campo magnético aplicado, o teor de P é sempre maior na fração magnética e sempre menor na fração não magnética, quando os valores são comparados com o teor de P na alimentação. Isso é um indício da associação do fósforo com minerais que têm Fe na estrutura.

Tanto a hematita especular quanto a hematita porosa se concentram na fração magnética nas etapas rougher e scavenger. A goethita se concentra na fração magnética apenas na etapa scavenger, uma vez que este mineral apresenta menor suscetibilidade magnética e a intensidade do campo magnético aplicada na etapa scavenger é maior.

As recuperações mássica e metalúrgica obtidas com a rota alternativa (separação magnética + flotação) foram em termos absolutos 3,3% e 4,4% maiores que as respectivas recuperações obtidas com a rota de referência (deslamagem + flotação). O teor de SiO₂ foi de 1,46% na rota alternativa e 2,29% na rota de referência.

Os resultados obtidos comprovam o potencial da rota de processo alternativa caracterizada pela etapa de separação magnética. A utilização da rota alternativa cria a possibilidade de alimentar as etapas subsequentes de flotação com teores de Fe maiores que o teor de Fe na alimentação da usina de beneficiamento. Considerando a redução do teor de Fe na alimentação das usinas de beneficiamento, a rota de processo caracterizada pela etapa de separação magnética é uma alternativa para o processamento dos minérios com baixo teor de Fe na alimentação. Por exemplo, considerando a razão de enriquecimento de 1,24 obtida nos testes (razão = 55,42%Fe na alimentação da flotação / 44,00%Fe na alimentação da usina), se o teor de Fe na alimentação da planta de beneficiamento for igual a 35,00%, o teor de Fe na alimentação da etapa de flotação seria igual a 43,00%. Maior teor de Fe na alimentação da flotação implica em uma redução na massa de SiO₂ a ser flotada na etapa de flotação.

AGRADECIMENTOS

O autor agradece a Samarco Mineração S.A. e ao PROEX CAPES, CNPq e a FAPEMIG pelo suporte financeiro ao PPGEM.

REFERÊNCIAS BIBLIOGRÁFICAS

BLUM, P. Magnetic Susceptibility In. BLUM, P. Physical Properties Handbook: A Guide to the Shipboard Measurement of Physical Properties of Deep-sea Cores by the Ocean Drilling Program. 1. ed. Chapter 04, p. 4-1 – 4-10, 1997.

HESS, H. H. Notes on Operation of Frantz Isodynamic Magnetic Separator. Princeton University, p. 1-6, 1966.

KLEIN, C. and DUTROW B. **Physical properties of minerals**. In: KLEIN, C. and DUTROW B. **The Manual of Mineral Science**. 23. ed. John Wiley & Sons, INC, Chapter 2, p.19-36, 2007b.

NESSET, J.E. and FINCH, J.A. **Determination of Magnetic Parameters for Fielddependent Susceptibility Minerals** by Frantz Isodynamic Magnetic Separator. Mineral Processing Extr. Metall., Volume 89, p. 161-166, Dec. 1980.

OBERTEUFFER, J. A. and WECHSLER, I. **Recent Advances in High Gradient Magnetic Separation**. In: International Symposium on Fine Particle Processing, vol. 2. 1980. Las Vegas. American Institute of Mining, Metallurgical, and Petroleum Engineering, Inc. vol. 2. New York, p. 11179-1215, 1980.

SILVA, J. P. M. S., PERES, A. E. C. and ISAAC, A. C. **Process Route for Low Grade Itabirites Concentration: Magnetic Separation Preceding Flotation**. Mineral Processing and Extractive Metallurgy Review, Nov. 2017

SVOBODA, J. and FUJITA, T. Recent Developments in Magnetic Methods of Material Separation. Minerals Engineering, Volume 16, p. 785-792, Jun. 2003.

Ministério de Minas e Energia, Agência Nacional de Mineração – ANM, 2021, Economia Mineral / Produção Mineral e Economia Mineral / Anuário Mineral. Disponível em: https://www.gov.br/anm/pt-br. Acesso em 13 de novembro de 2021.

APPLICATION OF HIGH INTENSITY MAGNETIC SEPARATION (WHIMS) IN THE BENEFICIATION OF LOW-GRADE ITABIRITE

ABSTRACT - Currently, in low-grade itabirite ((%Fe≈45,0%) processing plants quartz reverse flotation is the most commonly applied concentration step. In most cases, flotation circuits are preceded by classification circuits in hydrocyclones (desliming step), to remove ultrafine particles from the process. However, this process route begins to face problems to maintain the same levels of metallic recovery and concentrate quality when the Fe content in the plant feed is less than 40.0%. Tests were carried out to evaluate the application of high intensity magnetic separation in the improvement of poor itabirite. In the evaluated process route (magnetic separation + flotation), the magnetic separation step performs the function of pre-concentration and desliming. The SiO₂ content in the concentrate was 1.46% (less than the objective content of 2.00%). The mass and metallurgical recoveries obtained with the magnetic separation + flotation route was higher in absolute terms 3.3% and 4.4%, respectively.

KEYWORDS: Iron ore; Concentration; Flotation; Magnetic separation.

CAPÍTULO 6

OTIMIZAÇÃO DE INJEÇÃO DE POLIAMIDA PA66 COM 50% GF USANDO MÉTODO TAGUCHI

João Francisco Amâncio de Moraes

Instituto de Pesquisa Tecnológica, Processos Industriais, São Paulo, Brasil

lattes.cnpq.br/4136573441885304

RESUMO - A necessidade de materiais mais leves e de maior produtividade em substituição às ligas metálicas se torna cada dia maior, o que demanda o constante desenvolvimento de compósitos poliméricos e eficazes processos de fabricação. A moldagem por injeção é um método de processamento de alta taxa de produção, e tem a capacidade produzir formas complexas de de produtos plásticos a um custo relativamente baixo e com tempo de processo relativamento curto. Neste trabalho foram estudados os fatores. temperatura de processamento, fluxo volumétrico, pressão de recalque, contrapressão, velocidade da rosca e tempo de recalque, através de uma matriz ortogonal Taguchi L16 e, como resposta do estudo, mediuse a resistência máxima de tração (RTmáx), numa poliamida 66 com carga de 50% de fibra de vidro, Grivory GV-5H® . Fez-se uso da metodologia ANOVA para indentificarse os fatores de maior significância para o processo. A melhor resistência máxima de tração obtida de 242,6 N/m², mostrou-se como uma opção na substituição à aplicações de ligas metálicas de aluminio. А melhor resultado se obteve com a temperatura de processamento em 270°C, o fluxo volumétrico de 83 cm³/s, a pressão de recalque de 300 bar, a contrapressão de 10 bar. velocidade da rosca de 50 min⁻¹ e o tempo de recalque com valor de 5 s. As porcentagens de contribuição encontradas foram pressão de recalque contribuição com de 61%, seguido da temperatura de processamento, com contribuição de 17% e em terceiro, o fluxo volumétrico com contribuição de 12%.

PALAVRAS-CHAVE: Processo de injeção de polímeros; Propriedades mecânicas; Método Taguchi; Arranjos ortogonais; PA66.

1. INTRODUÇÃO

As indústrias em geral, estão exigindo cada vez mais ideias inovadoras para substituição de metal por polímeros, como oportunidade de se obter vantagem competitiva em seus respectivos mercados de atuação. (DUPONT, 2018). Plásticos de engenharia proporcionam resistência e rigidez consistentes e excelente desempenho de impacto para a substituição de metal. São mais leves e mais resistentes do que o alumínio, a liga de magnésio, a liga de alumínio e outros metais, além de que, seu desempenho associado a perfis mais finos, reduz o custo total e o peso das peças. Também contribuem para outras vantagens no produto e de processo de fabricação, incluindo: benefícios funcionais através da integração de peças, compreendendo uma série de peças de um projeto sendo fabricadas em um único componente moldado por injeção e, um melhor acabamento superficial com possibilidades de cores integradas (PLASTIX WORLD, 2016). Outra grande vantagem de componentes plásticos injetados na substituição de metal, é o seu tempo para processamento mais curto na produção de componentes de diferentes formatos e geometrias.

Com o objetivo de melhorar as propriedades mecânicas dos polímeros, nomeadamente a resistência mecânica, adiciona-se fibras curtas aos polímeros. Como os reforços inorgânicos de fibras possuem maior dureza e sofrem menor deformação do que a matriz, origina-se uma redução generalizada da deformação desta. A fibra de vidro, pelo fato de aliar um bom comportamento mecânico a um baixo custo, é o material mais utilizado como reforço na indústria dos plásticos, representando mais de 90% de todos os reforços utilizados em matrizes de materiais poliméricos (FAUSTINO, 2014 apud XANTHOS, 2010; RAHMAN, HASSAN e ROSIYAH, 2010).

As propriedades de uma peça moldada por injeção, por sua vez, dependem do material de trabalho (matéria-prima) e dos parâmetros de processamento. Embora o processo de injeção seja muito simples, a previsão da qualidade final da peça é uma tarefa difícil devido ao grande número de variáveis que interagem entre si.

Delineamentos de experimentos é uma das metodologias muita aplicada para se obter um processo de injeção otimizado. O método de arranjos ortogonais de Taguchi é uma das opções de se realizar experimentos com reduzida quantidade de simulações e, portanto, com um custo reduzido de ensaios, se comparado aos métodos estatísticos tradicionais como um fatorial completo o que resulta, ao final, numa enorme economia de custos para toda a organização.

No método de Taguchi, as fontes de variação são chamadas de fatores de ruído. Existem três tipos de fatores de ruído: externos (como o ambiente); unidade-por-unidade (a variação que todos os principais gurus estatísticos afirmam ser inerente a todos os processos de fabricação) e deterioração (diminuição do desempenho ao longo do tempo), os quais formam um tipo de entrada para um produto ou processo. Os outros fatores de entrada são fatores de sinal e fatores de controle, enquanto geralmente, um sinal de saída único é a resposta (SUH, N.; 1990).

As etapas no uso do método de projeto de parâmetros de Taguchi são divididos em três grupos: a) planejar a experiência (identificar a respostaalvo, os efeitos colaterais e os modos de falha, identificar fatores de ruído e condições de teste, identificar a característica de qualidade mais a função objetiva a ser observada, identificar os fatores de controle e seus níveis, conceber a matriz ortogonal a ser utilizada e definir o procedimento de análise de dados); b) realizar o experimento e, c) analisar os dados da experiência (analisar os dados para determinar os níveis ótimos e prever a resposta do produto/processo nestes níveis e, realizar uma experiência de confirmação para verificar os níveis otimizados (ZAMBINI, 1992 apud PHADKE, 1999; SUH N, 1990).

A característica de qualidade no método Taguchi é chamada de relação sinal-ruído (S/R). Esta relação (1) é definida para um procedimento "nominalo-melhor" e como tal, é uma medida do sinal do processo (sua resposta) aos fatores de ruído no processo. De acordo com Phadke, maximizar esta razão é equivalente a minimizar a perda de qualidade após o ajuste, bem como maximizar a robustez do produto.

$$\frac{s}{N} = -10\log_{10}\left(\frac{\mu^2}{\sigma^2}\right) \tag{1}$$

Onde:

µ²= média das respostas para determinado níveis de fatores;

 σ^2 = desvio padrão das repostas para determinada combinação de níveis de fatores.

O outro termo a ser explicado é o da matriz ortogonal. A matriz ortogonal é um dispositivo que lista os níveis particulares de cada fator de controle para cada tentativa de interação (ZAMBINI, 1992 *apud* SANDGREN, 1991). Cada coluna representa um fator de controle. Um fator de controle pode ser temperatura, tempo, tamanho, etc. Para cada fator de controle é atribuído níveis, tais como baixo, médio e alto.

A análise de variância (ANOVA), por sua vez, é uma técnica estatística para analisar a variação de uma variável de resposta. Frequentemente, usa-se ANOVA para testar a igualdade entre várias médias, comparando a variância entre os grupos em relação à variação dentro dos grupos (erro aleatório) e está incluída em quase todos os pacotes estatísticos, o que a torna acessível aos pesquisadores em todas as ciências experimentais. São dois os modelos mais comuns de aplicação ANOVA. O primeiro modelo, ANOVA de Um Fator (*One Way*), é uma extensão do teste t de *Student* que nos permite comparar as médias entre várias amostras independentes. O segundo modelo, ANOVA de Dois Fatores (*Two Way*), tem 2 fatores, A e B e cada nível de fator A aparece em combinação com cada nível do fator B. Este modelo nos permite comparar médias entre os níveis de fator A e entre os níveis do fator B; Além disso, pode-se examinar se fatores combinados induzem à efeitos de interação (sinérgicos ou antagônicos) na resposta (LARSON, 2008).

Radhwan *et al.* (2015), pesquisaram sobre uma otimização em relação à contração na moldagem por injeção, usando o método Taguchi. Os parâmetros de processo selecionados foram: a temperatura do molde,

temperatura de processamento, pressão de recalque, tempo de recalque e tempo de resfriamento. O número de simulações foi baseado na tabela L27 de arranjo ortogonal com três níveis por fator. O software Minitab foi usado para analisar o resultado onde a relação S/R (sinal/ruído) e análise de variância (ANOVA) foram utilizadas para se identificar os fatores mais significativos que contribuíram para a contração. A configuração recomendada foi produzida pela combinação de ajustes na temperatura de processamento com 220°C, temperatura do molde com 58°C, pressão de recalque de 85 MPa, tempo de recalque de 2,8 segundos e tempo de resfriamento de 50 segundos. A partir do estudo da ANOVA, mostrou-se que a temperatura de processamento contribuiu numa porcentagem de 96,1%, seguido pela temperatura do molde com 2,47%. O fator do tempo de recalque contribuiu com apenas 0,57%, seguido da pressão de recalque com 0,51% e, por último, o tempo de resfriamento que contribuiu com apenas 0,35%.

Maosheng *et al.* (2016) trabalharam nos parâmetros de otimização do processo de moldagem por injeção plástica de polipropileno PP-4025 em dois estágios. Na primeira etapa, os parâmetros temperatura de injeção, velocidade de injeção, pressão de recalque, tempo de recalque e tempo de resfriamento, foram selecionados. O experimento foi realizado com arranjo ortogonal de Taguchi, e as características de qualidade (comprimento do produto e empenamento) foram estudados como resposta do processo. Calculou-se a relação S/R e aplicou-se o método ANOVA. Os resultados obtidos podem ser resumidos da seguinte forma: a temperatura de injeção tem um efeito extremamente importante na relação S/R no resultado do comprimento do produto e no empenamento. Os parâmetros ideais encontrados foram, temperatura de injeção de 230°C, velocidade de injeção de 90mm/s, pressão de recalque de 65MPa, tempo de recalque de 4,5s e tempo de resfriamento de 5s. Através de Taguchi chegou-se às configurações de parâmetros cujo erros médios ficaram abaixo de 15%, em relação ao esperado.

Chi-Hung (2016) utilizou o método de Taguchi e o método *grey relational analysis*, para resolver o problema de deformações de uma ventoinha de refrigeração de computador. Os resultados indicaram que o fator mais influente encontrado foi a temperatura do molde, seguido pelo tempo de injeção, pressão de injeção e temperatura de processamento. Além disso, a análise dos graus relacionais, que representam uma taxa de contribuição dos fatores, indicou que o fator de variância mais significativo foi a temperatura do molde, seguido do tempo de preenchimento. Os fatores, pressão de enchimento e a temperatura de processamento foram os que apresentaram variação menos significativa e, que podem portanto, ser ajustados de forma a atingir o objetivo de redução de custo durante a produção.

Yizong *et al.* (2017), aplicaram a metodologia Taguchi para determinar os efeitos dos parâmetros de processamento nas propriedades de amostras moldados de poliestireno (PS) em corpo de prova ASTM D638. Seis parâmetros foram selecionados para o processo de moldagem

por injeção que incluiu número de portas (gates), velocidade de injeção, pressão de iniecão, temperatura do molde, temperatura de iniecão e pressão de recalque. Para cada parâmetro foram atribuídos três níveis, exceto pelo número de gates que foi definido com apenas dois níveis. De acordo com o número de fatores (parâmetros) e o número de níveis, o arranjo ortogonal L18 foi utilizado para a realização dos testes, portanto, uma quantidade total de 18 testes com 60 amostras ASTM D638 produzidas. Os dados obtidos foram analisados calculando-se a relação sinal-ruído (S / N), "maior-é-melhor". A linha de junção foi a responsável pela maior redução na resistência à tração. Os outros parâmetros tiveram aproximadamente o mesmo grau de influência sobre a resistência, mas a temperatura do polímero fundido teve um impacto ligeiramente maior em comparação com os demais. A temperatura de processamento foi a que teve a segunda maior influência na resistência à tração, onde se constatou que o aumento na temperatura fez com que a resistência à tração diminuísse. Isso foi explicado pela baixa tensão residual apresentada nas amostras quando a temperatura de processamento foi aumentada. Esta explicação também foi usada para o caso da temperatura do molde, onde a temperatura crescente do molde causou diminuição da tensão residual e uma respectiva diminuição na resistência à tração.

Kiatcharoenpol e Vichiraprasert (2018) usaram o método Taguchi e ANOVA com o objetivo primário de desenvolver uma modelagem matemática para otimizar e encontrar a condição adequada que pudesse produzir pecas com contração volumétrica e contração linear mínimas, estudando os parâmetros tempo de injeção, temperatura de injeção, temperatura do molde, pressão máxima de injeção, tempo de recalque, pressão máxima de recalque e tempo de resfriamento como fatores controláveis e, como fatores incontroláveis estudados foram temperatura do ar e temperatura de ejeção. Os experimentos foram realizados com uma matriz ortogonal (L16). Realizouse 64 ensaios experimentais. Com base no teste ANOVA, três fatores e duas interações foram encontrados como significativos estatisticamente. Os fatores de maior significância foram temperatura de injeção, tempo de recalque e tempo de resfriamento. Em relação às interações, foram significativas: a interação entre tempo de injeção e tempo de recalque e a interação entre o tempo de recalque e o tempo de resfriamento. A condição otimizada encontrada foi, temperatura de fusão de 215°C, tempo de recalque de 6s e tempo de resfriamento de 14s, em associação com encolhimento de volume de 6,5% e contração linear de 0,94 mm.

2. MATERIAIS E MÉTODOS

O material estudado foi uma poliamida semi cristalina (parcialmente aromática) reforçada com 50% em peso de fibras de vidro (Grevory GV-5H). Grivory® GV é o nome da marca de um grupo de plásticos de engenharia fabricados e comercializados pela EMS-GRIVORY, disponível em forma granular, com razão de aspecto abaixo de 20.

As amostras foram produzidas numa injetora ROMI, modelo EN100, com força de fechamento de 100 Ton., em corpos de prova conforme norma ASTM 638.

As condições de processamento (fatores e seus respectivos níveis) do arranjo ortogonal estudados se encontram na Tabela 1.

Fatores (Parâmetros do processo)		Abreviatura e unidade	Nível 1	Nível 2
Temperatura de processamento	[A]	MeT (°C)	270	300
Fluxo volumétrico	[B]	VF (cm ³ /s	83	142
Pressão de recalque	[C]	PR (bar)	300	800
Contrapressão	[D]	CP (bar)	5	10
Velocidade da rosca	[E]	VR (min ⁻¹)	50	100
Tempo de recalque	[F]	TR (s)	1	5

Tabela 1: Fatores e respectivos níveis de set up de máquina para produçãodos corpos de prova

A Tabela 2 mostra o arranjo ortogonal Taguchi escolhido, o L16, o que implica em 16 diferentes condições de parametrização de processo para a produção dos corpos de prova.

	MeT	VF	PR	CP	VR	TR
Condição	(°C)	(cm³/s)	(bar)	(bar)	(Min⁻¹)	(s)
	[A]	[B]	[C]	[D]	[E]	[F]
1	270	83	300	5	50	1
2	270	83	300	10	50	5
3	270	83	800	5	100	1
4	270	83	800	10	100	5
5	270	142	300	5	100	5
6	270	142	300	10	100	1
7	270	142	800	5	50	5
8	270	142	800	10	50	1
9	300	83	300	5	100	5
10	300	83	300	10	100	1
11	300	83	800	5	50	5
12	300	83	800	10	50	1
13	300	142	300	5	50	1

Tabela 2: Arranjo Ortogonal Taguchi L16

14	300	142	300	10	50	5
15	300	142	800	5	100	1
16	300	142	800	10	100	5

Foram utilizadas as colunas: 1,2,4,7,8,11 da matriz de 15 colunas, considerando na análise a independência de cada fator. As demais colunas, não utilizadas, seriam úteis caso se quisesse estudar a interação entre fatores, o que não foi previsto neste trabalho.

Foram produzidos um total de 96 corpos de prova com um molde de duas cavidades, que pode ser visto na **Figura 1**, cavidades do molde e par de corpo de prova respectivamente. Para cada uma das 16 condições, foram executados 3 ciclos de injeção consecutivas (3 repetições).

Fonte: SENAI Mario Amato - Corpo de provas ASTM638

A preparação da matéria prima e os parâmetros de set up da máquina injetora foram executados em acordo com o *technical datasheet* do fabricante (EMS-Grivory 5V-6H). Para a produção dos corpos de prova, não se fez necessário passar o compósito por um processo de secagem, pois o mesmo foi processado logo após a abertura da embalagem original (indicação do *datasheet* do fabricante).

Após a produção dos corpos de prova, os mesmos foram embalados em sacos plásticos com silica, de forma a assegurar o nível de teor de umidade definida pelo fabricante, até a realização dos ensaios de tração realizados nas condições de temperatura e umidade relativa controladas do laboratório.

Utilizou-se rosca universal protegida com bicos de fechamento, com relação diâmetro versus comprimento (L/D) igual a 16. Foram usados 5 zonas

de aquecimento com redução de 5°C entre cada uma delas, respectivamente, com a temperatura do bico de injeção em 270°C na condiçao 1 e 300°C na condição 2 do arranjo ortogonal.

A resistência máxima de tração (RTmáx) foi a resposta estudada do arranjo ortogonal. O ensaio foi realizado de acordo com a norma ASTM D638 no laboratório da Escola SENAI Mario Amato, em máquina universal de ensaios EMIC DL3000, equipada com *software* MTest, versão 2.02, com velocidade de ensaio de 5mm/min, à temperatura ambiente.

Foram conduzidos ensaios de calorimetria exploratória diferencial (DSC) a uma taxa de aquecimento de 20°C/min., de acordo com a norma ASTM D 3418, no laboratório de polímeros da Escola SENAI Mario Amato, em equipamento DSC Q20 V24.11, *software* V4.5^a da TA Instuments, com cadinho de alumínio (AI) sob atmosfera inerte de nitrogênio, com o objetivo de se verificar alterações na temperatura de fusão e/ou na temperatura de cristalização nos corpos de prova de menor e no de maior resistência de tração, na região de entrada do fundido (*gate*) e na região oposta à ele, com o objetivo de se verificar possível degradação em função das diferentes condições de processamento.

Posições de coleta de material para as análises de DSC

Entrada: Canal de injeção Lado oposto ao canal de injeção

3. RESULTADOS E DISCUSSÕES

Na Tabela 3 estão as forças máxima de tração (RTmáx) obtidas, as quais foram usadas para calcular a relação sinal/ruído (S/R) com o intuito de se obter a melhor configuração de parametrização do processo de injeção em estudo. São valores médios calculados de 5 amostras produzidas em três injeções (repetições) para cada condição, uma vez que o molde era constituído de 2 cavidades.

Mat (PC)	VE (Resposta
	VF (cm ⁻ /s)	FR (bar)	CP (bar)			RT máx (N/mm ²)
[A]	[B]	[U]		[E]	[i]	± desvio padrão
270	83	300	5	50	1	237,9±1,347
270	83	300	10	50	5	242,6±2,566
270	83	800	5	100	1	233,2±1,740
270	83	800	10	100	5	232,7±1,116
270	142	300	5	100	5	237,29±1,473
270	142	300	10	100	1	236,0±2,677
270	142	800	5	50	5	230,5±3,440
270	142	800	10	50	1	229,0±2,704
300	83	300	5	100	5	238,5±1,646
300	83	300	10	100	1	236,3±1,350
300	83	800	5	50	5	233,7±1,387
300	83	800	10	50	1	221,5±11,74
300	142	300	5	50	1	235,4±3,545
300	142	300	10	50	5	232,5±3,456
300	142	800	5	100	1	217,6±7,189
300	142	800	10	100	5	225,4±1,865
	MeT (°C) [A] 270 270 270 270 270 270 270 270 270 300 300 300 300 300 300 300 300 300	MeT (°C) VF (cm³/s) [B] 270 83 270 83 270 83 270 83 270 83 270 83 270 83 270 142 270 142 270 142 270 142 300 83 300 83 300 83 300 142 300 142 300 142 300 142 300 142 300 142 300 142 300 142 300 142	MeT (°C) VF (cm³/s) PR (bar) [A] [B] PR (bar) 270 83 300 270 83 300 270 83 800 270 83 800 270 83 800 270 83 800 270 142 300 270 142 800 270 142 800 300 83 300 300 83 300 300 83 800 300 83 800 300 83 800 300 83 800 300 142 300 300 142 300 300 142 800	MeT (°C) VF (cm³/s) [B] PR (bar) [C] CP (bar) [D] 270 83 300 5 270 83 300 10 270 83 300 5 270 83 800 5 270 83 800 10 270 83 800 10 270 142 300 5 270 142 300 10 270 142 800 5 270 142 800 5 270 142 800 5 300 83 300 5 300 83 800 10 300 83 800 5 300 142 300 5 300 142 300 5 300 142 800 5 300 142 800 5	MeT (°C) VF (cm³/s) PR (bar) CP (bar) VR (Min ⁻¹) [A] [B] PR (bar) [C] VR (Min ⁻¹) 270 83 300 5 50 270 83 300 10 50 270 83 800 5 100 270 83 800 10 100 270 83 800 5 100 270 83 800 10 100 270 142 300 5 50 270 142 800 5 50 270 142 800 5 50 270 142 800 10 50 300 83 300 5 100 300 83 800 10 50 300 83 800 10 50 300 142 300 5 50 300 142	MeT (°C) VF (cm³/s) PR (bar) CP (bar) VR (Min ⁻¹) TR (s) [A] [B] 270 83 300 5 50 1 270 83 300 5 50 1 270 83 300 10 50 5 270 83 800 5 100 1 270 83 800 5 100 1 270 83 800 5 100 1 270 83 800 5 100 5 270 142 300 5 100 5 270 142 800 5 50 5 270 142 800 10 50 1 300 83 300 5 100 5 300 83 800 5 50 5 300 83 800 10 50 1

 Tabela 3: Resultado da resistência máxima de tração obtida (RTmáx.)

Verificou-se que a melhor resistência à tração se conseguiu na condição 2 e, pior resultado, na condição 15, o qual teve seus fatores parametrizados em nível oposto ao do melhor resultado, sem exceção.

Também pode-se observar que na condição 12 e condição 15, as duas menores resistência de tração observadas, a faixa de variação das médias se mostraram muito acima das demais, com valores de desvio padrão de ±7.189 e ±11.74. respectivamente. Esta grande variação pode ser interpretada como que nestas duas condições, o processo se apresentou mais instável em relação às demais, devendo portanto ser considerada como condições críticas que devem ser evitadas.As relações sinal/ruído (razão S/R), que podem ser vistas na Tabela 4 e na Figura 2, foram utilizadas para medir a sensibilidade da característica de gualidade investigada. Um alto valor de S/R implica que o sinal é muito maior do que os efeitos aleatórios dos fatores de ruído ou variância mínima. Também estão indexados os resultados das maiores diferenças (delta) dos fatores dentro de seus respectivos níveis. O fator C, pressão de recalque (PR), foi o que apresentou a maior diferença entre os níveis, seguido do fator A, temperatura de processamento (MeT), pelo fator B, fluxo volumétrio (VF) e, assim, sucessivamente, até o de menor diferença, o fator E, velocidasde da rosca (VR).

	MeT	VF	PR	CP	VR	TR
Nível	(°C)	(cm ³ /s)	(bar)	(bar)	(Min ⁻¹)	(s)
	[A]	`[B]	[C]	[D]	È[E]	[F]
1	47,42	47,40	47,50	47,34	47,34	47,26
2	47,23	47,25	47,15	47,31	47,31	47,39
Delta	0,19	0,15	0,35	0,03	0,03	0,13
Classificação	2	3	1	5	6	4

 Tabela 4: Respostas da taxa S/R (sinal/ruído): maior-é-melhor

Assim, com base na relação S/R, concluiu-se que, a combinação ótima de parâmetros e os seus níveis para conseguir uma resistência máxima de tração foram A1B1C1D1E1F2, isto é, temperatura de processamento, nível 1, com a temperatura de 270°C; o fluxo volumétrico do material fundido, nível 1, com valor 83 cm³/s; a pressão de recalque, nível 1, com a pressão de 300 bar; a contrapressão, nível 1, valor de 10 bar; a velocidade da rosca, nível 1, velocidade de 50 min⁻¹ e o tempo de recalque no nível 2, com valor de 5 s.

Para se conhecer a importância relativa entre os parâmetros do processo que levou ao melhor resultado da resistência máxima de tração (RTmáx), fez-se uso da metodologia análise de variância (ANOVA), através dos valores *p-value*. Valores menores de 0,05 apresentam-se como de significância estatística do fator para um nível de confiança de 95%. Outra opção para se medir quais parâmetros têm efeitos significativos sobre a característica de qualidade estudada, é o cálculo da relação F (razão de variância).

Na Tabela 5, estão disponíveis as médias dos níveis 1 e 2 de cada fator respectivamente, dos 96 corpos de prova produzidos. Com essas

médias foram calculados a ANOVA para indexar os parâmetros de processo (fatores) de maiores significância no estudo, os quais devem ter um controle mais rígido durante o evento de preparação de máquina para injeção.

	MeT	VF	PR	CP	VR	TR
Nível	(°C)	(cm³/s)	(bar)	(bar)	(Min ⁻¹)	(s)
	[A]	[B]	[C]	[D]	[E]	[F]
1	234,9	234,6	237,1	233,0	232,9	230,9
2	230,1	230,5	227,9	232,0	232,1	234,1
Delta	4,8	4,1	9,2	1,0	0,8	3,2
Classificação	2	3	1	5	6	4

Tabela 5: Respostas das médias

Os cálculos de percentagem de contribuição da significância de cada fator que afetaram a resistência máxima de tração neste trabalho, pode ser visto na Tabela 6.

Tabela 6: Análise da variância das médias e suas respectivas porcentagemde contribuição

Fonte	gl	Seq SS	Adj SS	Adj MS	F	p-value	% Contribuição
MeT (°C)	1	0,131466	0,131466	0,131466	8,16	0,019	17%
VF (cm3/s)	1	0,094309	0,094309	0,094309	5,85	0,039	12%
PR (bar)	1	0,467971	0,467971	0,467971	29,03	0	61%
CP (bar)	1	0,005529	0,005529	0,005529	0,34	0,572	1%
VR (Min-1)	1	0,003562	0,003562	0,003562	0,22	0,649	0%
TR (s)	1	0,062059	0,062059	0,062059	3,85	0,081	8%
Erro residual	9	0,14506	0,14506	0,016118			
Total	15	0,909957					

O fator [C], pressão de recalque, com porcentagem de contribuição de 61%, para um *p*-value de zero, foi o fator de maior significância encontrado, seguido do fator [A], temperatura de processamento, com porcentagem de contribuição de 17%, com *p*-value de 0,019, seguido, em terceiro lugar, pelo fator [B], fluxo volumétrico com *p*-value de 0,039, com procentagem de contribuição de 12%.

Para os demais fatores, tais como, contra-pressão [D], Velocidade da rosca [E] e tempo de retenção [F] a porcentagem de contribuição ficou igual ou abaixo de 8%, portanto, sem muita significância estatística, se comparados

aos três primeiros.

Os resultados dos ensaios de Calorimetria Exploratória Diferencial (DSC) nos corpos de prova de maior e de menor resistência máxima de tração, corpos de prova 2 e 15 respectivamente, com materiais retirados de duas posições distintas, lado da entrada do fundido (gate) e no lado oposto a este, podem ser vistos na Tabela 7.

Tabela 7: Temperaturas de fusão e de cristalização dos corpos dascondições 2 e 15 – lado da injeção versus lado oposto à esta.

DSC (Differential Scanning Calorimetry) Temperaturas de fusão e de cristalização					
	Fusão (°C)	Cristalização (°C)			
Condição 2	Lado canal de injeção	259,31	226,02		
RT máx: 242,6 N/mm ²	Oposto canal de injeção	259,03	226,29		

		Fusão (°C)	Cristalização (°C)
Condição 15	Lado canal de injeção	258,68	226,42
RT máx: 217,6 N/mm2	Oposto canal de injeção	258,98	225,00

Fonte: elaborado pelo autor – Relatório de testes DSC realizado pela escola SENAI Mario Amato.

Dos resultados dos ensaios DSC, os quais não apresentaram diferença significativa entre os lados do canal de injeção e o oposto à ele, em suas respectivas temperaturas de fusão e de cristalização, pode-se inferir que os graus de cristalinidade nessas áreas distintas se apresentaram homogêneas entre si

4. CONCLUSÕES

Neste trabalho, foram analisados e interpretados os resultados do experimento Taguchi em relação à resistência máxima de tração em cada uma das dezesseis condições de testes produzidas de acordo com ensaios da matriz ortogonal L16, composta de seis fatores e dois níveis para cada um deles. Os cálculos e gráficos foram produzidos com o uso do *software* estatístico Minitab V17.

Também foi aplicado a análise de variância (ANOVA) com as médias de cada nível de cada fator, com o objetivo de se encontrar os parâmetros

que afetaram significativamente a característica de qualidade procurada, também com o pacote estatístico Minitab V17.

A relação sinal/ruído (razão S/R) utilizada foi a "maior-é-melhor" nos resultados de resistência máxima de tração obtidos (RTmáx). Os resultados de RTmáx obtidos nas 16 condições de fabricação (96 corpos de prova produzidos), variaram de um mínimo de 217,6N/m² e um máximo de 242,6N/m². Com base na relação S/R, concluiu-se que, a melhor combinação de parâmetros e os seus níveis para conseguir uma resistência máxima de tração (242,6 N/m²) foi: temperatura de processamento de 270°C; o fluxo volumétrico do material fundido de 83 cm³/s; a pressão de recalque de 300 bar; a contrapressão com valor de 10 bar; a velocidade da rosca no valor de 50 min⁻¹ e o tempo de recalque com valor igual a 5 s.

Para se obter a percentagem de contribuição, ou significância estatística de cada fator no total das variações, fez-se uso dos p-values da análise de variância (ANOVA), calculados com um nível de confiança de 95%. Os fatores de maiores significância estatística foram: pressão de recalque com porcentagem de contribuição de 61%, com uma valor *p-value* zero, seguido da temperatura de processamento, com porcentagem de contribuição de 17% , com valor *p-value* de 0,017, seguido, em terceiro lugar, pelo fluxo volumétrico com valor p-value de 0,034, com porcentagem de contribuição de 12%.

Os demais fatores, tais como, contra-pressão, velocidade da rôsca e tempo de retenção, com porcentagens de contribuição abaixo de 8%, não apresentaram *p-value* com significância estatística, o que significou que esses três parâmetros não exigirão uma atenção e um controle mais apurado, podendo ser aplicados de acordo com os valores nominais indicados pelo *datasheet* do fabricante da matéria-prima.

Os ensaios de calorimetria diferencial exploratória não apresentaram diferenças significativas nas temperaturas de fusão e nas temperaturas de cristalização entre a condição de melhor resistência a tração e a de menor resistência, corpos de prova 2 e 15 respectivamente. Também não se evidenciou diferenças significativas nas temperaturas de fusão e cristalização entre o ponto de injeção e o lado oposto a ele, em nenhuma das duas condições ensaiadas. Portanto, do exposto acima, pode se inferir que não se evidenciou degradação e nem alteração na condição de cristalinidade nas parametrizações que se produziram a melhor e a menor resistências de tração relatadas neste trabalho.

O tempo necessário para se realizar experimentos ortogonais é pequeno e os custos experimentais são baixos, se comparados aos desperdícios gerados na definição de parâmetros de processo conseguidos por tentativa e erro, considerando-se somente a experiência dos operadores envolvidos no processo. Esse fato, justifica portanto, a aplicação da metodologia Taguchi (Arranjos Ortogonais) de forma sistêmica durante o desenvolvimento e otimização nos processos produtivo das empresas.

REFERÊNCIAS

DUPONT, **Innovative Ideas for Metal Replacement**. Disponível em: <http://www. dupont.com/products-and-services/plastics-polymers-resins/articles/innovative-ideasfor-metal-replacement.html>. Acesso em: 7 de mar. 2018.

EMS-GRIVORY, **Grivory GV - The proven material for metal replacement,** Disponível em: https://www.emsgrivory.com/en/products-markets/products/grivory/grivory-gv/, Acesso em: 10 mar. 2018.

FAUSTINO, D.F.T., **Caracterização Mecânica de Poliamidas utilizadas em Intercoolers**, Dissertação para obtenção do Grau de Mestre, Técnico Lisboa, 2014.

KIATCHAROENPOL T., T VICHIRAPRASERT T., **Optimizing and Modeling for Plastic Injection Molding Process using Taguchi Method**, Journal of Physics: Conf. Series 1026, 2018, 6p.

LARSON M.G., Analysis of Variance - Statistical Primer for Cardiovascular Research, AHA Journals, 2008, 8p.

MAOSHENG T. et al., **Multi-objective optimization of injection molding process** parameters in two stages for multiple quality characteristics and energy efficiency using Taguchi method and NSGA-II, Int J Adv Manuf Technol, Springer-Verlag London, 2016, 14p.

PORTAL PLASTIX WORLD, <http://www.plastix-world.com/polyamides-not-justmetal-replacement/>, postado por Redazione em 18 de outubro de 2016. Acesso em 8 de maio de 2018.

PHADKE M.S. Quality Engineering Using Robust Design, Published by PTR Prentice-Hall, Inc. A Simon & Schuster Company, 1989.

RADHWAN H. et al.. An Optimization of Shrinkage in Injection Molding Parts by Using Taguchi Method, Journal of Advanced Research, Vol. 10, No. 1. Pages 1-8, 2015.

SUH, N. The Principles of Design, New York, New York: Oxford University Press, 1990.

YIZONG T.et al., Influence of Processing Parameters on Injection Molded Polystyrene using Taguchi Method as Design of Experiment, Procedia Engineering, 2007, 10p.

ZAMBANINI R.A., **The application of Taguchi's method of parameter design to the design of mechanical systems**, 1992, Theses and Dissertations, Paper 131.

TAGUCHI OPTIMIZATION OF INJECTION MOLDING USING PA66 POLYAMIDE WITH 50% GLASS FIBER

ABSTRACT - There is increasing demand to replace metal alloys with lighter and higherproductivity materials. This requires constant development of polymer composites and manufacturing processes. Injection molding is a high-throughput processing method that can produce complex plastic products quickly and inexpensively. Processing temperature, volumetric flow, hold pressure, back pressure, thread speed, and hold time were investigated using a Taguchi L16 orthogonal matrix. The maximum tensile strength of 50% pol 66 with Grivory GV-5H® glass fiber was 242.6 N/m², indicating that it is a suitable replacement for aluminum alloys. The best result was obtained with a 270 °C processing temperature, 83 cm³/s volumetric flow rate, 300 bar settling pressure, 10 bar back pressure, 50 min⁻¹ thread speed, and 5 s settling time. Analysis of variance was used to identify the most significant factors. The contributions were 61% hold pressure, 17% processing temperature, and 12% volumetric flow.

KEYWORDS: Injection molding of polymers; Mechanical properties; Orthogonal array; PA66; Taguchi method.

CAPÍTULO 7

ESTABILIDADE HIDRODINÂMICA DIRECIONAL DE MANIFOLDS SUBMARINOS DURANTE SUA INSTALAÇÃO PELO MÉTODO PENDULAR

Gustavo Calazans de Cerqueira lattes.cnpq.br/4958873010128301 Universidade Federal do Rio de Janeiro UFRJ

Antonio Carlos Fernandes lattes.cnpg.br/9090850388628824

Universidade Federal do Rio de Janeiro UFRJ

RESUMO - A instalação de grandes equipamentos submarinos em águas profundas apresenta uma série de desafios. O Método Pendular foi desenvolvido para possibilitar a realização desse tipo de serviço com segurança e economicidade garantidas. Este trabalho racionaliza tal método e, além disso, considera sistemas para evitar o capotamento. durante um momento crítico do método que é o início da descida. O trabalho apresenta uma modelagem matemática fenomenológica a partir de casos similares, na qual se inclui o efeito do desprendimento de vórtices sobre o corpo. Para validação, a investigação compara a modelagem proposta com resultados de testes experimentais realizados com modelos físicos. Com a confirmação da aderência dos resultados numéricos com os experimentos, esta abordagem pode ser uma ferramenta de engenharia para dimensionamento dos equipamentos submarinos instalados pelo Método Pendular para que sejam direcionalmente estáveis.

PALAVRAS-CHAVE: Método Pendular; Hidrodinâmica; Vórtices; manifolds submarinos; Tumbling; Fluttering.

1. INTRODUÇÃO

Esse capítulo resume o trabalho desenvolvido em [1].

1.1. Motivação

O aumento da LDA (lâmina d'áqua) nos campos de produção de petróleo no Brasil impôs desafios na atividade de instalação de manifolds submarinos. Nesta atividade, para maiores I DA são necessárias embarcações com quindastes não só com grandes capacidades de carga para içamento de manifolds no convés e manuseio na superfície, mas também capazes de sustentar toda a carga até o assentamento no leito marinho, percorrendo toda sua descida. Como é necessário um comprimento de cabo

suficientemente longo, o guindaste tem que sustentar também o peso do próprio cabo suspenso, o que aumenta a carga total.

Somando-se a estes problemas, a instalação de *manifolds* em grandes LDA tende a apresentar amplificação dinâmica das cargas, causada pelo fenômeno de ressonância. Quanto maior o comprimento de cabo entre a ponta da lança do guindaste e gancho que sustenta o *manifold*, menor a frequência natural do sistema. Assim, ao longo da descida do equipamento, esta frequência natural pode se aproximar da frequência das ondas que excitam a oscilação vertical através do movimento da embarcação.

Com o objetivo de solucionar estes problemas, foram desenvolvidos alguns métodos de instalação, como, por exemplo, os referenciados em [2]. Um desses desenvolvimentos chama-se Método de Instalação Pendular (MIP), que consiste em colocar inicialmente o *manifold* na água preso por um cabo desenrolado com comprimento um pouco menor do que a LDA, preso em um barco de manuseio de âncora (AHTS). Quando o AHTS está a uma distância do *manifold* em cerca de 90% do comprimento do cabo desenrolado, o *manifold* é liberado, deixando que ele caia, descrevendo um movimento aproximadamente circular que lembra o início de movimento pendular (daí o nome). A sequência do MIP é ilustrada na Figura 1.

Figura 1: Sequência de instalação pelo MIP. (Extraído de [3])

1- Barco de transporte

3 - Hangoff

2 - Overboarding

4 - Movimento Pendular

Este método possibilita a instalação de equipamentos submarinos de grande porte, como *manifolds*, por exemplo, em águas ultra profundas,

utilizando-se embarcações mais simples, como AHTS, além de uma embarcação que possua um guindaste de grande capacidade para colocar o equipamento na água, mas que não tenha que ter capacidade de conduzir até o leito marinho.

No primeiro momento do desenvolvimento do MIP, os esforços foram concentrados para os problemas que estão relacionados às questões dinâmicas, associadas às grandes profundidades e redução do peso próprio do cabo. Contudo, observou-se que existe a possibilidade do capotamento do equipamento submarino no início da sua descida [4]. Durante o movimento pendular, o equipamento acaba retornando à sua posição normal, devido à tração do cabo de instalação que aumenta suavemente e limitada pelo peso aparente devido à pequena carga dinâmica. Tanto no caso dos *manifolds* testados no LabOceano [2], Laboratório de Tecnologia Oceânica da COPPE/UFRJ, com modelo reduzido, quanto no teste de campo para a qualificação da metodologia, realizado com um *dummy manifold*, em escala real, observou-se o capotamento do *manifold* nos instantes iniciais da sua descida.

Esse capotamento pode ser observado no Vídeo 1. A escala do ensaio mostrado no vídeo foi de 1:35 e o movimento de queda modelo é interrompido pelo fundo do tanque, devido à profundidade total disponível no tanque de provas, representando, assim, apenas a parte inicial da descida do *manifold*.

Vídeo 1: Capotamento do modelo. Disponível em <u>https://youtu.</u> <u>be/1XhKAdLq3UI</u>
Para evitar qualquer anomalia durante a instalação, tais como possíveis danos ao cabo ou à lingada de lançamento, à instrumentação de posicionamento ou ao equipamento, provocados pela própria lingada, foram ensaiadas algumas opções para evitar esse capotamento. Confirmou-se, através de testes no LabOceano, a possibilidade de evitar esse tombamento com melhorias na estabilidade hidrodinâmica do equipamento e/ou com dispositivos que aumentem a restauração ao giro nos instantes iniciais. Medidas como o fechamento lateral do *manifold* com painéis laterais, ou adição de contrapesos para diminuição da altura do Centro de Gravidade (CG), ou ainda o aumento da tração ascendente na lingada de instalação, melhoram a estabilidade hidrodinâmica e impedem o tombamento do equipamento em queda livre. O Vídeo 2 mostra o ensaio de lançamento do modelo do *manifold* pelo MIP com o dispositivo de contrapesos chamado de "elevador".

Vídeo 2: Dispositivo utilizado para evitar o capotamento do *manifold*. Disponível em: <u>https://youtu.be/SQp2E04EVNs</u>

A dificuldade atual é que o dimensionamento desse dispositivo tem sido feito de forma empírica para cada projeto. Como a análise em CFD demanda um tempo excessivamente elevado e ainda não existe um modelo matemático que descreva o movimento de queda do *manifold*, é necessário realizar, para cada equipamento, testes em escala reduzida. O objetivo destes testes é definir a quantidade de contrapesos e o comprimento do cabo do elevador que devem ser utilizados para mitigar a possibilidade de capotamento do *manifold* ou outro equipamento submarino que venha a ser instalado pelo MIP.

1.2. Pesquisa bibliográfica

Pode-se apresentar o problema descrito na introdução como sendo um corpo imerso em um meio fluido, sob a ação do campo gravitacional, com empuxo menor que peso. Deve-se levar em consideração também as demais forças externas, que, neste caso, trata-se das trações atuantes no cabo de lançamento e do sistema antigiro, bem como o arrasto nos instantes iniciais.

Este problema de descrição do movimento de rotação de corpos em queda em meio fluido sob a ação da gravidade possui aplicação em diversas outras áreas. Contudo, para trabalhar o problema de maneira mais simples, diversos autores exploraram a dinâmica da queda livre de carta de baralho.

Um dos primeiros estudos modernos sobre o assunto foi realizado por Maxwell [5], onde foram feitas observações detalhadas sobre a queda livre de pedaços retangulares de papel. Desde então, diversos outros pesquisadores têm trabalhado para a melhor compreensão física do fenômeno, procurando por propriedades que determinem a transição entre movimentos de autorrotação (*tumbling*), que é quando o objeto gira constantemente em um mesmo sentido, e movimentos oscilatórios que não apresentam capotamento do objeto, tatalamento (*fluttering*).

Andersen et al. [6] utilizam o valor de inércia adimensional (I*) para determinação do valor crítico para a transição do tatalamento para a autorrotação de uma placa plana elíptica. Nesse trabalho, I* é tratado como sendo I* = (ρ_s .a) / (ρ_f .b), sendo a e b respectivamente a metade do maior eixo da placa e b a metade do menor eixo, ρ_s é a massa específica do objeto e ρ_f é a massa específica do fluido.

Bönish e Heuveline [7] apresentam um mapa para a transição entre cada um dos quatro casos de trajetória: quedas praticamente sem oscilação; quedas com oscilação, mas sem tombamento dos discos; movimentos de rotação caóticos e autorrotações. Esse mapa foi construído em função do momento de inércia adimensional (I*) e do número de Reynolds (Re), sendo Re também definido em função da velocidade terminal teórica do disco (caso em que o disco cai perpendicular a sua trajetória). Em concordância com os trabalhos anteriores, a partir de um determinado valor de I* o comportamento é sempre de autorrotação. Contudo, foram identificadas duas outras regiões. A primeira região é para pequenos números de Reynolds, onde o objeto praticamente não oscila. A outra região fica entra a transição do tatalamento para a autorrotação, onde a trajetória é caótica.

Mahadevanet al. [8] notaram em seus experimentos que a frequência

de autorrotação das cartas, durante a queda, é inversamente proporcional a sua largura. Notaram também uma segunda frequência de resposta associada à descida vertical mais rápida e mais lenta da carta que era o dobro da frequência de autorrotação. Essa segunda frequência, associada à descida vertical, é causada pela mudança do coeficiente de arrasto, que é função do ângulo de ataque. Assim, para cada giro completo da carta, o ângulo de ataque oscila em dois períodos completos.

Neste ponto, é importante observar o comportamento de desprendimento de vórtices ao redor de um cilindro. Blevins [9] apresentada esse comportamento em função do número de Reynolds do escoamento. Para baixos números de Reynolds não há o desprendimento de vórtices. Já para valores mais elevados ocorre o desprendimento alternado de vórtices, a menos de uma faixa de transição do escoamento de turbulento para laminar.

Parece sugestiva a associação de que, para baixos valores de Reynolds, onde ainda não há o desprendimento alternado de vórtices não haverá oscilação na queda do objeto, conforme apresentado em [7]. Além disso, as observações apresentadas anteriormente em [8] de que a frequência de autorrotação das cartas, durante a queda, é inversamente proporcional a sua largura e de que também há uma segunda frequência de resposta, associada à descida vertical mais rápida e mais lenta da carta, que era o dobro da frequência de autorrotação, parecem ser associadas diretamente ao comportamento de desprendimento alternado de vórtices sobre o corpo. Isso porque o valor de Strouhal (St), que relaciona a frequência de desprendimento dos vórtices com a velocidade de referência do escoamento (aplicado para escoamento em regime permanente), é praticamente constante para uma grande faixa de Re.

Até então, fica notório que a maioria dos trabalhos apresentados chega a valores de l* a partir do qual o objeto passará a ter um comportamento de autorrotação. Mas nenhum dos modelos expostos nestes trabalhos leva em consideração o efeito do desprendimento alternado dos vórtices, como os visualizados em experimentos, tais quais o mostrados em [10]. A Figura 2 mostra a esteira do escoamento gerado pela queda de uma placa plana retangular em meio fluido, com desprendimentos alternados de vórtices.

Figura 2: Visualização do escoamento gerado com a queda de uma placa plana retangular em um meio fluido. (Extraído de [10])

Na tentativa de simplificar ainda mais o problema, alguns autores abordaram o problema com apenas um grau de liberdade, para se aprofundar na compreensão dos aspectos mais importantes. Sefat e Fernandes [11], por exemplo, realizaram testes de uma placa plana pivotada no seu centro, em um canal de correnteza. A partir de um modelo matemático proposto para descrever esse sistema dinâmico, fizeram um estudo de estabilidade e apresentaram os pontos fixos desse sistema e as condições iniciais necessárias para que ocorra a autorrotação da placa plana.

Seshadri e Mittal [12] realizaram uma análise numérica para um problema similar ao problema descrito acima, tentando avaliar, contudo, a influência da espessura da placa plana no seu movimento de resposta. Citam também que "fica fortemente sugerido que a frequência de autorrotação é, primeiramente, determinada pelo processo de desprendimento de vórtices de Karman. Entretanto, o próprio processo de desprendimento de vórtice é alterado pela autorrotação do corpo".

1.3. Objetivo

A finalidade deste trabalho é desenvolver uma modelagem matemática que permita representar as ações hidrodinâmicas que levam ao capotamento de equipamentos submarinos instalados pelo Método de Instalação Pendular (MIP) e dimensionar os sistemas antigiro, para auxiliar na fase de projeto desses equipamentos.

O trabalho investiga os efeitos hidrodinâmicos mais significativos para o problema em questão e utiliza uma abordagem fenomenológica desenvolvida a partir de casos similares. Inclui-se a consideração de efeitos relevantes para o capotamento de equipamentos submarinos, quando da sua instalação em queda livre na água. Investiga-se o efeito do desprendimento de vórtices sobre o corpo e propõe-se um método para descrever adequadamente o movimento oscilatório do equipamento durante a sua queda na água.

1.4. Descrição da sequência de trabalho

Inicialmente o trabalho estuda um modelo com apenas um grau de liberdade para facilitar a compreensão dos principais fenômenos físicos atuantes no sistema. Confirmada a aderência da modelagem proposta passa a utilizar coeficientes hidrodinâmicos relevantes na modelagem do sistema completo que descreve a instalação de equipamentos submarinos instalados pelo Método de Instalação Pendular. Essa abordagem é então comparada com ensaios realizados anteriormente para esse tipo de instalação.

2. MODELO MATEMÁTICO DO SISTEMA COM UM GRAU DE LIBERDADE

Para melhor compreensão dos fenômenos físicos o trabalho realizou primeiramente alguns ensaios em laboratório com um sistema de apenas um grau de liberdade. Para isso, um modelo em escala reduzida foi colocado no canal de correnteza do LOC (Laboratório de Ondas e Correnteza) da COPPE/UFRJ. Esse canal possui 22 metros de comprimento, por 1,4 metros de largura e 0,5 metros de profundidade. Para a aproximação de efeitos de escoamento bidimensional, o modelo ensaiado foi projetado com comprimento maior do que a profundidade do canal e impôs-se uma pequena separação (aproximadamente 2 mm) com o fundo do canal. Este modelo foi fixado no ponto correspondente ao centro de gravidade do *manifold*, ficando sujeito à correnteza gerada pelo canal, com velocidade de referência de 0,47m/s. A Figura 3 mostra o modelo utilizado nos experimentos do laboratório de correnteza.

Figura 3: Ensaio de arrasto para determinação dos coeficientes hidrodinâmicos no *manifold* (LOC-COPPE/UFRJ).

O primeiro estudo preliminar foi fixar o modelo em diferentes ângulos de ataque e medir as forças longitudinais e transversais ao escoamento, bem como o torque gerado pelo escoamento no modelo, para cada ângulo.

O segundo passo seria deixar o modelo livre para girar em torno do seu ponto de fixação no canal e tentar descrever seu movimento através da equação utilizada por Sefat e Fernandes [11], equivalente a um sistema massa-mola, com rigidez não linear, dada pelo torque hidrodinâmico médio em função do ângulo de ataque do objeto, que havia sido medido na primeira etapa.

Todavia, este não foi o comportamento observado ao deixar o modelo livre para girar em torno do eixo de fixação. Quando liberado com inclinação e velocidade angular inicial nulas, o modelo oscilou algumas vezes até girar 180º e permanecer praticamente estável nessa posição. Já no modelo matemático, para essa mesma condição inicial, o resultado não atingiu a rotação de 180º, que corresponderia ao tombamento do *manifold*.

Em todos os ensaios foram observados o desprendimento alternado de vórtices. Além disso, nos experimentos de levantamento do torque hidrodinâmico em função do ângulo de ataque, notou-se que havia uma oscilação em torno do valor médio desse torque encontrado para cada ângulo, sincronizada com o desprendimento alternado de vórtices observados visualmente. Essa oscilação do toque ocorria praticamente de forma periódica, tal qual o desprendimento de vórtices. A Figura 4 é um desenho esquemático do modelo no laboratório de correnteza, com um determinado ângulo de ataque e com desprendimentos alternados de vórtices.

Figura 4: Desprendimento alternado de vórtices observado visualmente na superfície livre durante os ensaios

Baseado nas observações dos ensaios preliminares, foi proposta a implementação no modelo empírico de [11], de forma a incluir a influência da flutuação do torque hidrodinâmico devido ao desprendimento alternado de vórtices. Para essa proposta, foi incluído ao modelo matemático de [11] um termo que representa o momento externo periódico desta flutuação do torque hidrodinâmico em torno de um valor médio para um mesmo ângulo de ataque. Preliminarmente a frequência desta excitação está diretamente relacionada com o número de Strouhal, que como se sabe, é definido para o caso de regime permanente. Assim, a frequência da excitação externa, em radianos por segundo, a ser introduzida no modelo matemático seria dada por:

$$\omega = 2\pi \, St \, \frac{v}{d}$$

Onde:

- St é o número de Strouhal.
- *d* uma dimensão característica do modelo.
- *V* é a velocidade de referência do escoamento.

Contudo, como dito, o valor de *St* é dado para uma velocidade de referência do escoamento permanente e com o objeto parado. Assim, é natural levar em consideração o efeito da velocidade angular do objeto ($\dot{\theta}$) na composição da velocidade relativa para o valor de *St*. Como observado em [12], "o próprio processo de desprendimento de vórtice é alterado pela autorrotação do corpo". Sugere-se a seguinte equação para um número de

(1)

Strouhal equivalente:

$$\omega_{(t)} = 2\pi St \frac{V \pm |\dot{\theta}|_2^d}{d} \tag{2}$$

Neste caso, há a consideração do efeito entre o sentido do desprendimento do vórtice e o sentido da velocidade angular do modelo, subtraindo-se o termo adicional para o caso de sentidos iguais e somandose esse termo para os instantes em que os sentidos são opostos. A Figura 5 exemplifica esse efeito.

Figura 5: Consideração sobre o sentido de desprendimento do vórtice e da velocidade angular do modelo.

Outra consideração relevante é a adoção de um valor constante para o Strouhal equivalente, que em geral é independente do número de Reynolds. Tal premissa geralmente é utilizada para regime permanente.

Acrescentou-se também ao modelo matemático um termo de amortecimento para representação dos fenômenos dissipativos. Partindo-se do Teorema do Momento da Quantidade de Movimento para corpos Rígidos, tem-se que o somatório dos momentos externos atuantes sobre o modelo, em relação ao seu centro de gravidade é igual ao produto do momento de inércia do modelo também em relação ao centro de gravidade (por construção coincidente com o eixo de fixação no caso dos ensaios no LOC), pela aceleração angular do modelo, conforme Equação 3.

$$\sum M_{CG} = I \ddot{\theta} \tag{3}$$

Assim, sugere-se:

$$-I_{ad}\ddot{\theta} - D\dot{\theta}|\dot{\theta}| - T_{(\theta)} - T_{\nu(\theta)} \sin\left(\int_0^t \omega_{(t)} dt + \phi\right) = I \ddot{\theta}$$
(4)

Onde:

• *I* o momento de inércia do modelo no eixo do comprimento do *manifold* e em relação ao seu eixo de fixação.

• I_{ad} é a inércia hidrodinâmica adicional do modelo em relação ao eixo de fixação.

• D é o coeficiente de amortecimento angular.

• $T_{_{(\theta)}}$ é torque hidrodinâmico médio para um dado ângulo de ataque (θ).

• $T_{_{v(\theta)}}$ é a amplitude da flutuação do torque hidrodinâmico para um dado ângulo de ataque (θ).

• $\omega_{\rm (t)}$ é a frequência de desprendimento dos vórtices definida na Equação 2.

- *t* é o tempo.
- Ø é a fase do ciclo de desprendimento dos vórtices.

Como resumo, a partir da equação empírica de [11] foram acrescentados os termos que representam o amortecimento ao giro e a flutuação do torque hidrodinâmico devido ao desprendimento alternado de vórtices. Algumas premissas e simplificações foram adotadas para a modelagem do termo que representa os efeitos provocados pelo desprendimento alternado de vórtices. A frequência de desprendimento foi modelada considerando a premissa de um valor equivalente para o número de Strouhal, já que o objeto não se encontra parado, mas oscilando. Além disso, considerou-se esse valor de Strouhal equivalente como constante em função do número de Reynolds e sendo função da velocidade relativa entre o objeto e o escoamento, levandose ainda em conta também a velocidade de rotação do objeto. Como, nessa definição, a frequência de desprendimento é dependente do tempo, a premissa adotada foi que o desprendimento será sempre alternado e que a fase do ciclo de desprendimento nunca retorna (sempre progride). Por isso a necessidade do termo com integral com a variação do tempo, chegando-se a uma equação integro-diferencial.

O modelo numérico foi implementado e alguns casos foram simulados e comparados com experimentos no canal de correnteza, mostrando a boa

aderência aos resultados de capotamento (giro de 180º do modelo).

3. APLICAÇÃO DO MODELO PROPOSTO PARA AVALIAÇÃO DA ESTABILIDADE DIRECIONAL DE MANIFOLD INSTALADOS PELO MÉTODO PENDULAR

O modelo matemático proposto obteve razoável previsibilidade do capotamento dos modelos ensaiados, com apenas um grau de liberdade. Para o estudo da estabilidade direcional de um *manifold* em queda livre, na água, passa-se a considerar também os movimentos de translação, ao longo da queda, permitindo-se deslocamento lateral também. Assim, aliada à Equação 3, que representa o Teorema do Momento da Quantidade de Movimento para corpos Rígidos em relação ao centro de gravidade, deve-se considerar também a aplicação da segunda lei de Newton para os somatórios das forças externas nas direções vertical e horizontal.

Diferente do que ocorre com o sistema de um grau de liberdade estudado nos capítulos anteriores, para este sistema de 3 graus de liberdade o ângulo de ataque não será mais sempre coincidente com a inclinação do *manifold* (θ). Passa a ser a composição da inclinação do *manifold* com a o ângulo da sua velocidade de translação resultante.

Para o cálculo numérico das equações de movimento do *manifold* em queda livre, na água, utilizou-se o programa comercial Orcaflex[®]. Tratase de um programa de elementos finitos que permite análises acopladas e desacopladas de corpos rígidos e linhas, flexíveis ou rígidas, utilizado para análises globais de *risers* e de linhas de ancoragem. A ferramenta utilizada no programa para a representação do *manifold* é um modelo de corpo rígido denominado de bóia 6D, que possui definições geométricas, inerciais e hidrodinâmicas. Os valores de arrasto, sustentação e momento hidrodinâmico médio em função do ângulo de ataque utilizados foram obtidos em análises CFD, com escoamentos permanentes e mantendo-se o ângulo de ataque fixo em cada caso. Para representá-los no Orcaflex[®] foi utilizada uma propriedade na bóia 6D, chamada asa, que permite a inclusão de forças e momentos extras em função da velocidade do escoamento sobre o objeto e do ângulo de ataque.

Já o efeito da flutuação do momento hidrodinâmico devido ao desprendimento de vórtices foi obtido através de uma função externa ao programa, que, para cada intervalo de integração, coleta os resultados da integração (velocidade de translação e angular, além da inclinação do *manifold*) e calcula o torque devido ao desprendimento dos vórtices. Essa função externa foi programada em Python. Os coeficientes da amplitude da flutuação do torque hidrodinâmico em função do ângulo de ataque utilizados foram os obtidos nos ensaios do LOC.

Além das forças e momentos hidrodinâmicos atuantes sobre o equipamento, são levados em consideração as forças e momentos provocados

pelos cabos e sistemas de instalação.

Alguns ensaios foram realizados no LabOceano com o modelo em escala de 1:35. Tais ensaios foram realizados sem ondas e variando-se a quantidade de flutuadores e de contrapesos, a fim de definir a configuração a ser utilizada na instalação dos *manifolds* reais. Estes mesmos casos foram analisados numericamente para comparação do modelo matemático proposto.

O Vídeo 3 mostra a comparação entre os resultados experimentais e numéricos para cada um desses casos. Em todos os casos simulados houve a aderência entre o resultado obtido nos experimentos e nas análises numéricas sobre o capotamento do *manifold*. O único que obteve resultados divergentes foi justamente quando não foi levado em consideração os efeitos do desprendimento alternado de vórtices, conforme proposto nesse trabalho.

Vídeo 3: Comparação entre os resultados experimentais e numéricos. Disponível em: https://youtu.be/Yb0spW9cM5M

4. CONCLUSÃO E TRABALHOS FUTUROS

O objetivo do trabalho foi atingido com a confirmação da razoável previsibilidade do modelo matemático proposto sobre o comportamento de estabilidade direcional de *manifold* submarinos instalados pelo Método de Instalação Pendular (MIP). O trabalho testou e acertou propriedades com um modelo em um sistema mais simples, com apenas um grau de liberdade no Canal de Correntes do LOC. Em seguida, estudou um sistema mais complexo, com três graus de liberdade, que simula a descida do *manifold* durante o MIP. Em ambos os casos o modelo matemático proposto conseguiu prever razoavelmente bem a possibilidade de capotamento do equipamento nos instantes iniciais.

O trabalho tornou clara a importância da consideração não apenas das forças e torque médio hidrodinâmico em função do ângulo de ataque, mas

também da flutuação do torque hidrodinâmico provocado pelo desprendimento alternado de vórtices.

Para futuros trabalhos, recomenda-se também o aprofundamento ao tema de entrada na água. Da maneira que foi utilizado, o MIP ainda depende de uma embarcação com um guindaste offshore com grande capacidade de carga, suficiente, ao menos, para colocar o *manifold* na água. A melhoria necessária a esse método de instalação, para a utilização apenas de embarcações de maior disponibilidade e mais baratas, é a utilização de uma rampa de lançamento montada em outro AHTS. Assim, a colocação do *manifold* na água poderia ser feita por deslizamento, tal qual o que é feito com plataformas do tipo jaqueta, e conforme esquemático apresentado na Figura 6.

Figura 6: Método Pendular com rampa de lançamento. (Extraído de [13])

Um modelo matemático que descreva adequadamente o movimento do *manifold* durante a entrada na água, por meio dessa rampa de lançamento, associado ao modelo apresentado nesse trabalho, ao longo da sua descida, pode se tornar uma boa ferramenta de engenharia para o dimensionamento de sistemas garantam a estabilidade direcional.

REFERÊNCIAS

[1] CERQUEIRA, G.C., FERNANDES, A.C. Estabilidade hidrodinâmica direcional de manifolds submarinos durante sua instalação pelo método pendular. Dissertação de Mestrado. Universidade Federal do Rio de Janeiro, 2016.

[2] ROVERI, F.E., MACHADO, R.D., STOCK, P.F.K., CERQUEIRA, M.B. The Utilization of the Pendulous Motion for Deployment Subsea Hardware in Ultra-Deep Water. DOT 2005.

[3] FERNANDES, A.C., NEVES, C.R., JUNIOR, J.S.S. The concomitant model testing approach for the development of the pendulous installation method of heavy devices in deep water. OMAE 2007-29405, 2007.

[4] STOCK, P.F.K., KUPPENS, M.L., SILVA, J.L.B., FERREIRA, J.A.N., CERQUEIRA, M.B. Roncador Manifolds Installation by the Pendulous Method. DOT 2007.

[5] MAXWELL, J.C. Scientific Papers of J. C. Maxwell. Vol. 1, p. 115. New York, 1940.

[6] ANDERSEN, A., PESAVENTO, U., WANG, Z.J. Analysis of transitions between fluttering, tumbling and steady descent of falling cards. J. Fluid Mech. 2005

[7] BÖNISH, S., HEUVELINE, V. On the numerical simulation of the unsteady free fall of a solid in a fluid: I. The Newtonian case. Elsevier Computers & Fluids 36, 1434-1445 (2007).

[8] MAHADEVAN, L, RYU, W.S., SAMUEL, A.D.T. Tumbling cards. Physics Fluids Letters, vol. 11, no. 1 (1999).

[9] BLEVIS, R.D. Applied Fluid Dynamics Handbook. Edition 2003.

[10] BELMONTE, A., EISENBERG, H., MOSES, E. From Flutter to Tumble: Inertial Drag and Froude Similarity in Falling Paper. Physical Review Letters, Vol. 81, No 2, pp. 345- 348 (1998).

[11] SEFAT, S.M., FERNANDES, A.C. Tatalamento e Autorrotação de Placa Plana Vertical Articulada Induzidos por Corrente Uniforme. Dissertação de Doutorado. Universidade Federal do Rio de Janeiro, 2011.

[12] SESHADRI, V., MITTAL, R. **Vortex Induced Auto-Rotation of a Hinged Plate: A Computational Study**. 4th ASME_JSME Joint Fluids Engineering Conference. Honolulu, Hawaii, USA, 2003.

[13] CERQUEIRA, M.B., CERQUEIRA, G.C., OLIVEIRA, D.G.A. Pendulous Installation Method (PIM) without Offshore Crane. SubseaForum. Rio de Janeiro, Brazil, 2014.

DIRECTIONAL HYDRODYNAMIC STABILITY OF SUBSEA MANIFOLDS DURING THEIR PENDULAR INSTALLATION

ABSTRACT - The installation of large subsea equipment in deep water presents a series of challenges. The Pendular Method was developed to enable this type of service to be carried out with guaranteed safety and economy. This work rationalizes this method and, in addition, considers systems to avoid overturning, during a critical moment of the method, which is the beginning of the descent. The work presents a phenomenological mathematical modeling from similar cases, which includes the effect of vortex shedding on the body. For validation, the investigation compares the proposed modeling with results of experimental tests performed with physical models. With the confirmation of the adherence of the numerical results with the experiments, this approach can be an engineering tool for dimensioning the subsea equipment installed by the Pendular Method so that they are directionally stable.

KEYWORDS: Pendular method; Hydrodynamics; Vortices; Subsea manifolds; Tumbling; Fluttering.

CAPÍTULO 8

MAPEAMENTO DA PROFUNDIDADE DE MISTURA PROVOCADA POR VENTOS SEVEROS EM RESERVATÓRIO SINUOSO

Marcelo Marques lattes.cnpq.br/0855863872309532 Universidade Estadual de Maringá

Alejandro Victor Hidalgo Valdivia lattes.cnpq.br/5538035382284444 Universidad Catolica de Santa Maria

Fernando Oliveira de Andrade lattes.cnpq.br/5175699449525205 Universidade Tecnológica Federal do Paraná

Elaine Patricia Arantes lattes.cnpq.br/5673783965584352 Universidade Estadual de Maringá

Isabela Arantes Ferreira lattes.cnpq.br/7252508396222629 Universidade Estadual de Maringá

RESUMO - Este trabalho apresenta a simulação da distribuição espacial das ondas geradas pela ação de ventos severos sobre o reservatório da barragem de Salto Caxias, no rio Iguaçu, estado do Paraná. Os ventos severos foram estimados através da análise de frequência regional para várias estações anemométricas Instituto Meteorológico do do (SIMEPAR). Paraná As alturas de ondas foram estimadas pelo método paramétrico SMB, que usa como dados de entrada o fetch e a velocidade do vento. O método SMB foi aplicado pelo modelo computacional ONDACAD. A análise de frequência regional do vento considerou os registros horários das rajadas medidas nas estações do SIMEPAR para o período de 1998 a 2005. Os testes estatísticos indicaram que a distribuição de Wakeby foi a mais robusta para as séries curtas de ventos horários máximos anuais. produzindo estimativas de ventos severos que variaram entre 25,7 ms-1 (tempo de retorno de Tr=10 anos) a 50,9 ms-1 (Tr=100 anos).

PALAVRAS-CHAVE: Onda; Vento; Reservatório.

1. INTRODUÇÃO

As ondas geradas pela ação do vento, ao se propagar em águas continentais como lagos e reservatórios, promove a perturbação da massa líquida rumo ao fundo. O termo profundidade de mistura é definido como a profundidade máxima perturbada pela onda ao se propagar. Pelo presente estudo esse conceito é aplicado ao reservatório de Salto Caxias, o último dos reservatórios em cascata no rio Iguaçu e distante cerca de 400 quilômetros da capitalCuritiba, noestado doParaná, sul do Brasil. Possui 141 km² de superfície, 3.573 hm³ de volume total e 3,31km de fetch máximo, conforme Margues *et. al* (2012). A profundidade média é de 25m.

2. FUNDAMENTAÇÃO TEÓRICA E MÉTODOS

A simulação da representação bidimensional da profundidade de mistura foi obtida para ventos severos relacionados a períodos de retorno de 10, 20, 50 e 100 anos. Os ventos severos foram estimados através da análise de frequência regional de dados provenientes das estações anemométricas do Instituto Meteorológico do Paraná (SIMEPAR). A análise considerou os registros horários das rajadas medidas nas estações do SIMEPAR para o período de 1998 a 2005. Os testes estatísticos produziram estimativas de ventos severos relacionados a períodos de retorno com as seguintes intensidades: 25,7 ms⁻¹ (período de retorno de 10 anos), 29,3 ms⁻¹ (período de retorno de 20 anos), 38,2 ms⁻¹ (período de retorno de 50 anos) a 50,9 ms⁻¹ (período de retorno de 100 anos), conforme mapas mostrados pela Figura 1.

2.1. Determinação dos ventos severos

Para estimar a magnitude e frequência dos vendavais no reservatório de Salto Caxias, foram analisados dados de rajadas provenientes de 26 estações meteorológicas do (SIMEPAR).

Os dados de vento foram baseados no processamento das séries de vento horário de todas as estações meteorológicas do SIMEPAR de 1997 a 2005.

Nestas estações, o vento horário é definido como a média dos dez registros de vento medidos nos dez últimos segundos de cada hora. Os anemômetros constituem-se em equipamentos no modelo YOUNG 05103-11, instalados a dez metros de altura. O percentual de falhas e dados espúrios foi de 2,8%.

2.2. Modelo INTERPLOT

Por localizar-se muito próximo à divisa com o estado do Paraná, decidiu-se pela determinação dos ventos severos sobre o reservatório em estudo através de um processo de interpolação com base nos dados históricos de intensidade do vento proveniente das Estações do SIMEPAR. Com vistas a automatizar este processo foi concebido um modelo computacional denominado INTERPLOT, idealizado com vistas a obter a distribuição dos ventos severos sobre o reservatório em estudo.

O modelo foi concebido de modo a fornecer valores intermediários de intensidade e direção do vento, com base nos dados fornecidos por estações

meteorológicas de localização conhecida. O modelo assume as seguintes condições: (1) todas as estações estão localizadas a um mesmo nível e, portanto, os vetores gerados por interpolação são coplanares; (2) o efeito no vento, provocado pelo uso e ocupação do solo no local de instalação da estação, é igualmente interpolado.

Os dados recebidos são corrigidos por questões de localização da estação (se instalada sobre a terra ou sobre a água), altura da estação (altura de referência de 10 m), variação de temperatura entre o ar e o solo e condição atmosférica da camada limite. A localização da estação e a altura são elementos estáticos e recebem um coeficiente de correção para cada estação. A correção pela variação de temperatura entre o ar e o solo é automaticamente realizada quando o registro está presente no arquivo de entrada. Uma estrutura esquemática do módulo de correção do arquivo é mostrada pela Figura 1.

O modelo INTERPLOT obtém o campo de vento para as direções i e j, perpendiculares entre si, através de interpolação pelo método do inverso ponderado da distância, conforme equação 1:

Figura 1: Fluxograma de ajuste do dado de vento

$$u_{i} = \frac{\sum_{i=1}^{n} \frac{u_{i}}{r_{i}^{\beta}}}{\sum_{i=1}^{n} \frac{1}{r_{i}^{\beta}}} \qquad \qquad u_{j} = \frac{\sum_{j=1}^{n} \frac{u_{j}}{r_{j}^{\beta}}}{\sum_{j=1}^{n} \frac{1}{r_{j}^{\beta}}}$$
(1)

No qual o valor interpolado para o nó do reticulado (Z) é obtido com base na distância (hij) entre o nó da grade e Zi; β é o expoente de ponderação e n o número de estações anemométricas envolvidas.

O fluxograma do processo de interpolação é mostrado pela Figura 2.

3. RESULTADOS OBTIDOS

3.1. Campos de vento

Os dados de vento foram descritos e analisados por Gonçalves (2007), que processou as séries de vento horário proveniente das estações meteorológicas do Sistema Meteorológico do Paraná (SIMEPAR) de 1997 a 2005. Nestas estações, o vento horário é definido como a média dos dez registros de vento medidos nos dez últimos segundos de cada hora. Os anemômetros constituem-se em equipamentos no modelo YOUNG 05103-11, instalados a dez metros de altura. O percentual de falhas e dados espúrios foi de 2,8%. Na geração da distribuição das ondas, as informações sobre intensidade e direção do vento foram obtidas pela geração dos mapas temáticos representados pela Figuras 3 e 4. Os períodos de retorno são mostrados pela Tabela 1.

Figura 4: Distribuição da intensidade do vento para períodos de retorno de 50 e 100 anos

Capítulo 8

Tr (anos)	10	20	50	100
U (m/s)	25,7	29,3	38,2	50,9

 Tabela 1: Intensidade de vento severo para Salto Caxias

3.2. Mapas de profundidade de mistura

As profundidades são determinadas com base em representações bidimensionais da superfície do corpo hídrico, obtidas pela aplicação da técnica de simulação denominada paramétrica bidimensional, desenvolvida por Marques (2013). Pela técnica, um campo de fetch é transformado em um campo de altura de ondas através da aplicação de uma equação paramétrica.

Pela técnica de modelagem adotada, um campo de fetch é convertido em um campo de profundidade de mistura através de uma equação paramétrica. obtida pela combinação da equação de comprimento da onda, obtida da teoria linear de ondas e da equação paramétrica SMB, resultando na equação seguinte:

$$pfm = \frac{4,52U_{10}^{2}}{g} \left\{ \tanh\left[0,077\left(\frac{gF}{U_{10}^{2}}\right)^{0.25}\right] \right\}^{2}$$
(1)

Segundo Bretschneider (1966), o método referido como SMB foi inicialmente proposto por Sverdrup & Munk (1947) e posteriormente modificado pelo autor, recebendo as letras iniciais do sobrenome de seus idealizadores.

É através da equação anterior que o campo de fetch é transformado em um campo de profundidade de mistura pela utilização do modelo computacional ONDACAD, permitindo a geração de 16 mapas de profundidade de mistura para cada uma das quatro condições de vento, totalizando 64 mapas. Para efeito ilustrativo foram selecionados os quatro mapas na direção em que ocorre o maior fetch (Marques *et. al,* 2012), a direção Norte, conforme Figura 5. Com base na maior profundidade atingida pelas ondas, foi elaborada a Tabela 2.

Figura 5: Mapas de profundidade de mistura para a direção do maior fetch

Tabela 2: Profundidade máxima atingida para diferentes direções eintensidades do vento

Direç	ão	Е	ENE	NE	NNE	Ν	NNW	NW	WNW	W	WSW	SW	SSW	S	SSE	SE	ESE	Tr(anos)
FETC	Ή	2,2	2,3	2,7	2,62	3,3	2,94	2,9	2,83	2,7	2,57	2,5	2,64	2,5	2,6	2,5	2,5	ii(aii03)
U(m/s)	25,7	10,0	10,4	11,1	11,0	12,3	11,6	11,5	11,4	11,1	10,9	10,8	11,0	10,7	11,0	10,8	10,8	10
	29,3	11,4	11,8	12,7	12,6	14,1	13,3	13,1	13,0	12,7	12,4	12,3	12,6	12,3	12,6	12,3	12,3	20
	38,2	15,0	15,5	16,6	16,5	18,5	17,4	17,2	17,1	16,6	16,3	16,1	16,5	16,0	16,5	16,1	16,2	50
	50,9	20,0	20,7	22,2	22,0	24,7	23,3	23,0	22,9	22,3	21,8	21,6	22,1	21,5	22,0	21,6	21,6	100

4. DISCUSSÃO E CONCLUSÕES

As profundidades máximas perturbadas pela onda ao se propagar foram atingidas para vento norte, variando de 12,3 a 24,7m para as condições de vento adotadas. Considerando que a profundidade média é de 25 m e que o vento que sopra na direção do maior fetch não atinge esta profundidade, mesmo soprando com intensidade de 50,9 ms⁻¹, estima-se ser bastante incomum que as perturbações geradas pela propagação das ondas atinjam o fundo. Portanto, através dos resultados é possível constatar que se trata de local no qual é incomum a ressuspensão de sedimentos devido à ação de ondas.

Um importante desdobramento que pode ser empreendido por trabalhos futuros é a incorporação da batimetria do reservatório no processo de modelagem de modo a permitir o mapeamento das tensões no fundo geradas pela onda ao se propagar.

REFERÊNCIAS

BRETSCHNEIDER, C. L. (1966). Wave generation by wind, deep and shallow water. In: A.T. Ippen (Editor), Estuary and Coastline Hydrodynamics. McGraw-Hill, New York, 744 pp.

MARQUES, M. GUETTER, BORTOLOTTO, A. B.; ANDRADE, F. O.; VITAL, E. P.; GUETTER, A. K. *Distribuição do fetch no reservatório de Salto Caxias*. In: III Simpósio Ambiental da Universidade Tecnológica Federal do Paraná, Campo Mourão, Paraná, Brasil, 2012.

MARQUES, M.; ANDRADE, F. O.; GUETTER, A. K.. *Conceito do Campo de fetch e sua Aplicação ao reservatório de Itaipu*. Revista Brasileira de Recursos Hídricos, v. 18, p. 243-253, 2013.

SVERDRUP, H.U. & MUNK, W.H. (1947). Wind, sea and swell: Theory of relations for forecasting. Publication 601, Hydrographic Office, U.S. Navy, 50 pp.

MAPPING OF THE MIXING DEPTH BY SEVERE WINDS IN A SINUOUS RESERVOIR

ABSTRACT - This work presents the simulation of the spatial distribution of waves generated by the action of severe winds over the Salto Caxias dam reservoir, on the Iguaçu River, Paraná State. Severe winds were estimated through regional frequency analysis for several anemometric stations at the Meteorological Institute of Paraná (SIMEPAR). The wave heights were estimated by the SMB parametric method, which uses fetch and wind speed as input data. The SMB method was applied using the computational model ONDACAD. The regional wind frequency analysis considered the hourly records of gusts measured at SIMEPAR stations for the period from 1998 to 2005. Statistical tests indicated that the Wakeby distribution was the most robust for the short series of maximum annual hourly winds, producing estimates of severe winds that varied between 25.7 ms-1 (return time Tr = 10 years) to 50.9 ms-1 (Tr = 100 years).

KEYWORDS: Wave; Wind; Reservoir.

CAPÍTULO 9

ANÁLISE COMPARATIVA DE MODELOS PARAMÉTRICOS NA SIMULAÇÃO DE ALTURA DE ONDAS NO RESERVATÓRIO DE ITAIPU

Marcelo Marques

Universidade Estadual de Maringá lattes.cnpq.br/0855863872309532

Fernando O. de Andrade

Universidade Tecnológica Federal do Paraná lattes.cnpg.br/5175699449525205

Elaine P. Arantes

Universidade Estadual de Maringá lattes.cnpq.br/5673783965584352

Cristhiane M. P. Okawa Universidade Estadual de Maringá lattes.cnpg.br/1268747202598728

Isabela A. Ferreira

Universidade Estadual de Maringá lattes.cnpg.br/7252508396222629

RESUMO - O presente trabalho visa apresentar uma análise comparativa bidimensional entre os modelos MARQUES e JONSWAP, com base em ventos severos com tempo de recorrência de 10, 20, 50 e 100 anos, de acordo com dados disponibilizados pelo Sistema

Meteorológico do Paraná (SIMEPAR). É analisado o reservatório da Usina Hidrelétrica de Itaipu – Paraná. localizado no Rio Paraná. Através da utilização do modelo ONDACAD foram determinados os campos de fetch e a transformação em campos de ondas pela utilização dos modelos paramétricos MARQUES e JONSWAP. Ao proceder a análise constatou-se que, ao majorar os resultados do modelo JONSWAP em 78% chega-se aos resultados bidimensionais gerados pelo modelo Marques. Esta condição foi verificada para situações de ventos extremos, ou seja, superiores a 20ms-1 e corpos hídricos que possuem fetch máximo da ordem de 10 quilômetros.

PALAVRAS-CHAVE: ONDACAD; SWAN; Fetch.

1. INTRODUÇÃO

Lagos reservatórios е constituem-se em componentes indissociáveis da paisagem brasileira, presentes em todas as arandes bacias hidrográficas. А opcão do Brasil pela hidroeletricidade e a crescente demanda de energia permitem antever que a ocupação de novas bacias hidrográficas ou sub-bacias por reservatórios será

inevitável (Marques, 2013).

A grande superfície destes corpos hídricos e as perturbações geradas pela exposição ao vento favorece o surgimento de ondas progressivas. Ao se propagarem, as ondas podem induzir processos de mistura em toda coluna d'água tendendo a destruir a estratificação vertical favorecendo a criação de gradientes longitudinais e transversais mais intensos (SMITH, 1994). Estudos em corpos hídricos desse tipo frequentemente demandam informações relacionadas à dinâmica da massa hídrica.

A modelagem numérica dos processos físicos constitui-se atualmente na técnica computacional mais confiável de simulação de ondas geradas pelo vento. A técnica simula a transferência de energia na interface da atmosfera com a água e o impacto dos fenômenos dissipativos na amplitude das ondas. No desenvolvimento da modelagem numérica se avançou para a simulação das ondas decorrentes de campos de ventos variáveis no espaço e no tempo, além da inclusão da variabilidade dos campos de pressão e da profundidade (FERNANDEZ *et al.*, 2014). Também houve avanços no desenvolvimento da modelagem das ondas influenciadas pelas marés e pelas forças de Coriolis devido à rotação planetária, e dos mecanismos de interação onda-onda.

Apesar do indiscutível aumento de precisão atingido pelos modelos numéricos de base física, os modelos paramétricos continuam sendo amplamente empregados, principalmente, pela impossibilidade, técnica ou financeira, de utilização de modelos numéricos de base física. Esse fato deve-se a duas características altamente desejáveis em qualquer método de estimativa, presente nos modelos paramétricos: a estruturação por um número reduzido de variáveis e o fornecimento de resultados de forma rápida. Apesar do aumento de robustez que torna os modelos numéricos físicos mais lentos, requerendo maiores recursos computacionais para assimilação de dados e processamento, a predominância das atenções voltadas ao desenvolvimento desses modelos deve-se, principalmente, à possibilidade de obtenção de resultados bidimensionais, automatizados e em tempo real, condicionados obviamente aos recursos financeiros disponíveis.

Visando a retomada da aplicação de equações paramétricas pela sua simplicidade de aplicação e demanda a uma quantidade reduzida de variáveis foi desenvolvida a técnica denominada Modelagem Paramétrica Bidimensional (MPB) por Marques (2013).

Trata-se de uma técnica de simulação de fenômenos gerados pelo vento em águas continentais de grande superfície como lagos e reservatórios, podendo ser aplicados também a baías e estuários confinados.

A técnica MPB permite a obtenção de resultados semelhantes aos gerados pelos modelos numéricos de base física, porém, sob processos elementares. Pela técnica, o conceito do campo de fetch pode ser transformado em um campo de ondas mediante o emprego de uma equação paramétrica que estabelece uma relação unívoca entre o fetch e a altura da onda, condicionada pela intensidade do vento.

Entre as vantagens da modelagem paramétrica bidimensional estão a geração de mapas com baixo tempo de processamento e a dependência somente da intensidade e direção do vento como principais forçantes do processo.

2. MODELOS MARQUES E JONSWAP

De acordo com Marques (2013) o projeto JONSWAP (*Joint North Sea Wave Project*) consistiu em uma série de levantamentos de dados de ventos e ondas realizados no mar do Norte ao longo dos anos de 1968 e 1969, com o objetivo de melhor compreender o processo de formação das ondas pelo vento (HASSELMANN *et al.*, 1973; HASSELMANN *et al.*, 1976). A coleta de dados foi realizada ao longo de um trecho de 160 km a partir da costa a oeste da Dinamarca. Os resultados desse estudo foram utilizados para estabelecer equações de previsão de altura significativa e período de ondas considerando uma velocidade de vento constante e incluindo as limitações de pista e de duração para o desenvolvimento da onda.

O projeto JONSWAP deu origem a no modelo com a mesma denominação, o qual constitui-se em uma equação paramétrica amplamente difundida no meio técnico visando a simulação de altura de ondas. O modelo JONSWAP é expresso pela equação 1 e relacionada a altura significativa da onda (H_s), o fetch (F), a intensidade do vento a dez metros de altura (U_{10}) e a aceleração da gravidade (g).

$$\frac{g_{HS}}{U_{10}^2} = 0,0016 \left(\frac{g_F}{U_{10}^2}\right)^{0.5} \tag{1}$$

Os termos gFU^{-1} e gHU^{-1} representam respectivamente os termos adimensionais de fetch (F^*) e altura de onda (H^*). Deste modo o modelo JONSWAP possui uma estrutura que pode ser generalizada pela equação seguinte:

$$H^* = \alpha (F^*)^{\beta} \tag{2}$$

Na qual os coeficientes $\alpha \in \beta$ são constantes.

Através do trabalho de Marques (2013) foi determinada uma nova equação paramétrica, a qual segue a topologia da equação 2, sendo expressa a seguir:

Note-se que, diferentemente do modelo JONSWAP e das demais equações paramétricas na literatura, o modelo MARQUES possui coeficientes $\alpha \in \beta$ variáveis e condicionados pela intensidade do vento.

Uma discussão abrangente sobre a topologia de equações paramétricas deste tipo foi realizada por Marques *et al*. (2014).

O modelo Marques foi determinado pelo ajustes de curvas em um

diagrama adimensional de fetch (F) *versus* altura adimensional de onda (H), baseando-se nas conclusões de Marques *et al.* (2014).ao afirmar que uma topologia de equação paramétrica mais confiável deve conter coeficientes condicionados pela intensidade do vento.

Os corpos hídricos foram modelados para campos de vento uniforme com intensidades de 5, 10, 15 e 20 ms⁻¹. Visando a obtenção de uma equação paramétrica abrangente, os coeficientes foram determinados para oito corpos hídricos, entre lagos e reservatórios, com comprimento de fetch máximo variando da ordem de um a duzentos e cinquenta quilômetros conforme a Tabela 1.

Corpo Hídrico	Resolução da malha (m)	Fetch máximo (km)			
Vossoroca	15	1,1			
Molinos	25	3,91			
Salto Caxias	75	3,31			
Jurumirim	200	9,3			
Itaipu	300	12,9			
Mangueira	250	23,9			
Lago Superior	2000	253,1			

Tabela 1: Reservatórios estudados na determinação da equaçãoMARQUES

Fonte: Marques (2013)

3. VENTOS EXTREMOS EM ITAIPU

Para estimar a magnitude e frequência dos vendavais no reservatório de Itaipu, localizado próximo à tríplice fronteira entre o Brasil, Paraguai e Argentina, foram analisados dados de rajadas provenientes de 26 estações meteorológicas Sistema Meteorológico do Paraná (SIMEPAR).

Os dados de vento foram baseados no processamento das séries de vento horário de 1997 a 2005 (GONÇALVES, 2007). Nestas estações, o vento horário é definido como a média dos dez registros de vento medidos nos dez últimos segundos de cada hora. Os anemômetros constituem-se em equipamentos modelo YOUNG 05103-11, instalados a dez metros de altura. O percentual de falhas e dados espúrios foi de 2,8%.

Decidiu-se pela representação dos ventos severos sobre o Reservatório de Itaipu através de um processo de interpolação pelo inverso do quadrado das distâncias. A obtenção automatizada dos campos de vento relacionados a períodos de retorno foram obtidas pela aplicação do modelo computacional INTERPLOT apresentado por Marques *et al.*, 2013. As intensidades do vento relacionadas a períodos de retorno para Itaipu estão descritas pela Tabela 2.

Período de retorno do vento (anos)	U (m/s)
10	22,8
20	26,4
50	35,3
100	47,8
10 20 50 100	22,8 26,4 35,3 47,8

Tabela 2: Intensidades do vento relacionadoas a períodos de retorno noreservatório de Itaipu

4. ÁREA DE ESTUDO

O reservatório de Itaipu (Figura 7) se localiza no rio Paraná e foi escolhido por sua importância energética e seu potencial para a expansão dos usos múltiplos, incluindo-se a aquicultura, lazer e navegação comercial. O limite sul é dado pela barragem de Itaipu, tendo o reservatório as seguintes características segundo Andrade *et al.*, (2004): (1) Comprimento aproximado de 170 km e largura média de 7 km; (2) Área alagada de 1.350 km² (770 km² em território Brasileiro e 580 km² em território Paraguaio); (3) Profundidade média de 22 m, chegando a 170 m nas proximidades da barragem; (4) Área de drenagem de aproximadamente 820.000 km².

5. RESULTADOS OBTIDOS

A geração dos campos de fetch pelo modelo ONDACAD e altura de ondas pelo modelo SWAN permitiu a construção do diagrama adimensional mostrado por meio da Figura 1.

Figura 1: Diagrama adimensional dos métodos Marques e JONSWAP para o reservatório de Itaipu Pelo diagrama adimensional da Figura 1 nota-se que os métodos comparados permitem a obtenção de alturas de ondas bastante divergentes. De modo geral as alturas de ondas adimensionais determinadas pelo método Marques quase chegam ao dobro do tamanho das alturas geradas pelo método JONSWAP.

Os campos de ondas gerados pelos campos de vento uniformes são mostrados pela Figura 2 para ambos os métodos.

Figura 2: Campos de ondas gerados pelos métodos MARQUES e JONSWAP para ventos de 10, 20, 50 e 100 anos de período de retorno

Observando a diferença acentuada entre os resultados e o aspecto semelhante das curvas, decidiu-se pela geração de mapas de desvio entre os resultados obtidos para cada método, para cada intensidade do vento, conforme Figura 3.

De acordo com a Figura 3, surpreendentemente a relação entre as alturas de ondas se aproximou de uma distribuição constante. Isto implica afirmar que deve haver uma constante que multiplicada pela equação de

Capítulo

೧

JONSWAP, permita a simulação de campos de ondas semelhantes aos obtidos pelo método MARQUES. Visando obter o valor desta constante decidiu-se por uma operação elementar de determinação da média dos valores distribuídos sob cada período de retorno do vento, com resultados mostrados pela Tabela 3.

Tabela 3: Determinação do coeficiente para modificação do modeloJONSWAP

Período de retorno do vento (anos)	HsMarques/ HsJONSWAP	Desvio Padrão	Coeficiente de Variação (%)		
10	1,74	0,005	0,3		
20	1,77	0,011	0,63		
50	1,80	0,027	1,47		
100	1,79	0,030	1,68		
Média	1,78	0,018	1,02		

Devido aos pequenos valores de coeficiente de variação, adotouse o coeficiente 1,78. O modelo JONSWAP modificado é representado pela equação 5.e os resultados comparativos estão dispostos lado a lado na Figura 4.

$$\frac{gH_s}{U_{10}^2} = 0,00285 \left(\frac{gF}{U_{10}^2}\right)^{0.5}$$
(5)

Considerando a comparação entre os resultados apresentados pela Figura 12 constata-se que majorando os resultados do modelo JONSWAP em 78% atinge-se uma distribuição praticamente idêntica da obtida pelo modelo Marques. Deste modo, para ventos de intensidade superior a 20 ms⁻¹, em corpos hídrico que possuem fetch máximo da ordem de 10 quilômetros, pode-se empregar coeficientes alfa e beta constantes simplificando consideravelmente a equação paramétrica.

Revisando as equações paramétricas mais difundidas no técnico depara-se com uma equação semelhante ao modelo JONSWAP Modificado e consequentemente ao modelo Marques. Trata-se do modelo de Saville, uma equação paramétrica a coeficientes constantes desenvolvida por Saville *et al.* (1962), mostrada a seguir:

$$\frac{gH_s}{U_{10}^2} = 0,0025 \left(\frac{gF}{U_{10}^2}\right)^{0,47}$$
(6)

Estas semelhanças indicam uma convergência surpreendente entre os resultados de equação concebidas sob condições e recursos técnicos tão diversos.

Figura 4: Campos de ondas gerados pelos métodos Marques e JONSWAP Modificado

6. CONSIDERAÇÕES FINAIS

O modelo JONSWAP consiste em uma equação paramétrica de coeficientes constantes concebida em águas oceânicas ao longo dos anos de 1968 e 1969.

O modelo Marques se constitui em uma equação paramétrica de coeficientes variáveis, obtida com base em resultados de modernos modelos computacionais, amplamente validados no meio técnico.

Ao proceder a análise comparativa constatou-se que, ao majorar os resultados do modelo JONSWAP em 78% chega-se aos resultados bidimensionais gerados pelo modelo MARQUES. Esta condição foi verificada para situações de ventos extremos, ou seja, superiores a 20ms⁻¹ e corpos hídricos que possuem fetch máximo da ordem de 10 quilômetros.

Esta constatação permite simplificar consideravelmente o modelo MARQUES quando o corpo hídrico atende às condições já citadas. Permite ainda o aproveitamento seguro de resultados publicados que adotaram o método JONSWAP nas estimativas de altura de ondas. Um importante desdobramento que pode ser empreendido por trabalhos futuros é a incorporação do modelo paramétrico de Saville nas análises para corpos hídricos de diferentes magnitudes sob diferentes campos de vento.

REFERÊNCIAS

Andrade F. O., Gonçalves, J. E., Gonçalves, R. C., GUETTER, A. K. 2004. Implementação e análise de sensibilidade do modelo numérico hidrodinâmico Delft-3D para o reservatório de Itaipu. In: XXI Congreso Latinoamericano de Hidraulica. São Pedro/SP, Brasil, Out /2004.

Gonçalves, C. R. 2007. Análise de Frequência Regional de Ventos Extremos no Paraná. Dissertação apresentada ao Programa de Pós-Grad. em Engenharia de Recursos Hídricos e Ambiental Universidade Federal do Paraná. Curitiba, PR.

Hasselmann, K., Ross, D. B.; Muller, P.; Sell, W. 1976. A parametric wave prediction model. J. Phys. Oceanogr., 6(2), 200–228.

Hasselmann, K.; Barnett, T. P.; Bouws, E.; Carlosn, H.; Cartwright, D. E.; Enke, K.; Ewing, J. A.; Gienapp, H.; Hasselmann, D. E.; Kruseman, P.; Meerburg, A.; Muller, P.; Olbers, D. J.; Richter, K.; Sell, W.; Walden, H. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deut. Hydrogr. Z., A8(12).

Marques, M. 2013. Modelagem paramétrica bidimensional para simulação de ondas em águas continentais. Tese de doutorado - Programa de Pós-Graduação Engenharia de Recursos Hídricos e Ambiental. Curitiba: Universidade Federal do Paraná. 219p.

Marques, M.; Andrade, F. O. ; Guetter, A. K. 2013. Conceito do Campo de Fetch e sua Aplicação ao Reservatório de Itaipu. Revista Brasileira de Recursos Hídricos, v. 18, p.

243-253, 2013.

Marques, M.; Andrade, F. O. 2017. Automated computation of two-dimensional fetch fields: case study of the Salto Caxias reservoir in southern Brazil. Lake and Reservoir Management, v. 32, p. 1- 12, 2017.

Marques, M.; Andrade, F. O.; Arantes, E. P.; Guetter, A. 2014. Proposta de topologia de uma equação paramétrica para modelagem de ondas baseada na equação do balanço de energia. In: XXVI Congreso Latinoamericano de Hidráulica. Santiago, Chile, Agosto/2014.

Marques, M.; Andrade, F. O.; Guetter, A. K. 2013. Conceito do Campo de fetch e sua Aplicação ao reservatório de Itaipu. Revista Brasileira de Recursos Hídricos, v. 18, p. 243-253.

Marques, M.; Maciel, G. F. ; Dall'Aglio Sobrinho, M. 2007. Estimativa das máximas pistas de vento no reservatório da barragem de Ilha Solteira - Estado de São Paulo -. Acta Scientiarum. Technology (Impresso), v. v. 29, p. 79-84, 2007.

Saville, T.; McClendon, E. W.; Cochran, A. L. 1962. Freeboard allowances for waves in inland reservoirs. ASCE Journal of the Waterways and Harbors Division, V. 88(WW2): 93-124.

Saville, T. 1954. The effect of fetch width on wave generation. *Technical Memorandum No.* 70, U.S. Army, Corps of Engineers, Beach Erosion Board, 9 pp.

BIDIMENSIONAL COMPARATIVE ANALYSIS OF MARQUES AND JONSWAP MODELS IN WIND WAVE SIMULATION AT ITAIPU RESERVOIR

ABSTRACT - The present work aims to present a two-dimensional comparative analysis between the MARQUES and JONSWAP models, based on severe winds with a recurrence time of 10, 20, 50 and 100 years, according to data provided by the Paraná Meteorological System (SIMEPAR). The reservoir of the Itaipu, located on the Paraná River, is analyzed. Using the ONDACAD model, the fetch fields were transformed in wave field by using the MARQUES and JONSWAP models. When the analysis was carried out, it was verified that, by increasing the results of the JONSWAP model by 78%, we arrive at the two-dimensional results generated by the Marques model. This condition was verified for situations of extreme winds, that is, superior to 20ms⁻¹ and water bodies that have maximum fetch of the order of 10 kilometers.

KEYWORDS: ONDACAD; SWAN; Fetch.

ÍNDICE REMISSIVO

Α

Aço 9, 12, 27, 28, 37, 38 Agronegócio 9, 27, 36 Alto-forno 28, 30, 32-37, 39, 40 ANOVA 10, 91, 93-95, 100-102 Área superficial 9, 12-14, 26, 33 Arranjos ortogonais 91, 92, 103

В

Batimetria 130 Biocombustíveis 27 Biomassa 9, 12, 27, 29-38, 40 Brasil 7, 11, 29, 31, 37, 58, 72, 73, 91, 106, 131

С

Calorimetria 98, 102, 103 Carbono 29-31, 34, 36, 37, 40 Carga 9, 10, 14, 20-23, 25, 32, 42-45, 47, 47-53, 91, 106-108, 120 Carvão mineral 9, 27, 29, 31, 35, 37-40 Catalisador 10, 12, 56, 69, 70 cBN 9, 10, 12, 56-58, 61, 63-71 Célula 15, 19, 44, 60, 61, 76 Circuitos 72, 73 Combustível 32, 34, 35, 37 Comportamento eletroquímico 14-17, 43 Concentração 72, 73, 82 Coque 27, 29, 31-35, 37, 38, 40 Coque breeze 34, 35 Coqueria 30, 32, 37, 38 Corrente 16, 17, 19, 20, 23, 75, 78, 79, 112, 113, 115, 117, 119, 121

Corte 10, 56-58, 69 Crescimento 9, 12-14, 16, 17, 21, 22-25, 42, 43, 45, 46, 49, 53, 54, 58 Cristais 57, 58, 68, 82-84 Cristalitos 61, 64, 65, 69

D

Deformação 92 Desgaste 57, 58 Deslamagem 10, 72, 73, 75, 85, 86 DRX 61-63 Dureza 10, 56-58, 92

Е

Efeito estufa 11, 27, 30 Eletrodo 9, 12-22, 24, 25, 43, 44, 47 Elipsometria 42-44 Emissões 9, 27-30, 34, 35, 37, 38, 40 Energia 28-30, 34, 82, 85, 86, 88, 89, 131, 132, 140, 144 Estabilidade 10, 13, 56, 57, 106, 109, 112, 118-120 Estanho 9, 12-14, 16-25, 42-53

F

Ferro 10, 12, 27-29, 32-35, 37, 40, 56-58, 70, 72, 73, 76, 78, 83-85 Fetch 11, 123, 124, 128-135, 138-140 Fibras 92, 95 Filmes 9, 15, 20, 42-54 Flotação 10, 72, 73, 75, 76, 79, 85-89 *Fluttering* 106, 121, 122 Fotossíntese 9, 27, 29, 35, 37

Н

Hematita 77, 81-84, 88 Hidrodinâmica 10, 13, 106, 109, 113, 117, 118

Indústria 9, 14, 27-30, 34, 35, 39, 42, 56-58, 91, 92 Inércia 110, 117, 118 Injeção 10, 12, 27, 36-39, 91-95, 97, 98, 101-103 Itabiritos 10, 12, 72, 73, 75 Itaipu 11, 130, 131, 134, 135, 139, 140

Μ

Magnésio 10, 56, 58-60, 63, 64, 67, 68, 70, 92 Manifolds 10, 13, 106-108, 119-122 Método Pendular 11, 13, 106, 118, 120 Método Taguchi 12, 93, 95 MEV 61, 67, 82-85 **MFA 42** MIP 107-110, 113, 119, 120 Modelagem 10, 95, 106, 113, 117, 128, 130, 132, 133, 139, 140 Modelo 10, 11, 15, 44, 45, 59, 60, 93, 96, 106, 108, 109, 111-120, 123-125, 127, 128, 131-135, 137-139 Morfologia 9, 12, 42, 68 MPB 132

0

ONDACAD 11, 123, 128, 130, 131, 135, 140 Ondas 11, 107, 113, 119, 123, 127-129, 131-133, 135-140 Oxidação 17, 43 Óxido de estanho 9, 14, 19-25, 42-51, 53

Ρ

Passivação 15, 16, 17, 42-44 pH 9, 12, 14-17, 19-21, 22, 24-26, 42-44, 52-55, 76 Polarização 43 Poliamida 10, 12, 91, 95, 104 Polímeros 91, 92, 98 Poluição 29 Potencial 9, 14, 19-26, 30, 34, 38, 42-45, 49, 52, 54, 63, 73, 74, 88, 135 Pressão 10, 57-60, 63-69, 76, 91, 94-96, 99-101, 103, 132 Profundidade 10, 13, 56, 108, 113, 123, 124, 128, 129, 132, 135 Propriedades mecânicas 92

Q

Quartzo 72, 73, 75, 77, 81-86

R

Redução 9, 16, 17, 19-27, 29, 37, 38, 40, 58, 72, 73, 88, 89, 92, 94, 95, 98, 108 Rejeitos 9, 27, 36 Resistência 10, 43, 57, 58, 91, 92, 98-103 Retífica 56, 57, 69 Reynolds 110, 111, 116, 117 Rio Iguaçu 124 Rugosidade 9, 10, 14, 42, 44, 48, 50, 51, 53, 56

S

Separação magnética 10, 12, 72-76, 79, 81, 85, 89

```
Siderurgia 27, 29, 31, 37
Síntese 10, 12, 56-60, 62, 63, 69,
70
Strouhal 111, 115-117
Superfície 12, 14, 19, 23, 25, 26,
33, 43, 44, 47, 48, 50, 56, 57, 59,
63, 106, 115, 124, 128, 132
SWAN 131, 135, 140
```

Т

Tenacidade 10, 56 Topografia 14, 44, 47 Tração 10, 91, 95, 97-103, 108, 109 *Tumbling* 106, 121, 122

U

Usinagem 9, 56-58

V

Varredura 19, 20, 22, 24, 26, 53, 54, 61, 82 Vento 11, 13, 94, 123-129, 131-134, 136-140 Voltametria 9, 12, 14, 19-23, 25, 26, 42-44, 51, 53, 54 Voltamograma 9, 14, 16-19, 21-25, 45, 48 Vórtices 106, 111-115, 117-120, 122

SOBRE O ORGANIZADOR

Rafael Gonçalves Mafra

Rafael Gonçalves Mafra é Engenheiro Mecânico graduado pela Universidade Federal de São João del Rei. Aluno de doutorado em Engenharia Mecânica na área de Conversão de Energia pela Universidade Federal de Itajubá. Possui Mestrado em Engenharia Mecânica pela Universidade Federal de Itajubá (2017). Experiência de estágio em Engenharia de Manufatura pela TRW Automotive (2011). Tem experiência na área de Transferência de Calor.

Pesquisa em Engenharia: Ciência e Aplicação

www.bookerfield.com

contato@bookerfield.com

@bookerfield 🕑

Bookerfield Editora (in)

Pesquisa em Engenharia: Ciência e Aplicação

contato@bookerfield.com

@bookerfield 🕑

Bookerfield Editora in

